Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình nhé
a) Tam giác ABM và tam giác CDM có:
AM=CM ( M là trung điểm của AC)
MD=MB(gt)
góc AMB=góc DMC ( đối đỉnh)
Suy ra tam giác ABM = tam giác CDM (c-g-c)
b)Vì tam giác ABM = tam giác CDM ( chứng minh ở câu a)
Suy ra góc CDM= góc MBA (hai góc tương ứng)
Mà hai góc CDM và MBA la hai góc so le trong
Vậy AB // CD
c)Vì AK vuông góc với BD
CH vuông góc với BD
Suy ra AK // CH ( từ vuông góc đến song song)
Suy ra góc HCM=góc KAM ( hai góc so le trong)
Tam giác CKM= tam giác AHM(g-c-g)
Suy ra KM=HM(hai cạnh tương ứng)
Ta có K nằm giữa M và K
nên Bk+KM=BM (1)
Ta có H nằm giữa M và D
nên MH+HD=MD (2)
mà BM=MD( hai cạnh tương ứng của tam giác ABM và tam giác CDM) (3)
Từ (1),(2) và (3) suy ra BK=DH
thế này đúng ko
a) Chứng minh : 𝛥ABM = 𝛥CDM
Xét 𝛥ABM và 𝛥CDM :
MA = MC (gt)
MB = MD (gt)
(đối đinh)
=> 𝛥ABM = 𝛥CDM (c – g – c)
b) Chứng minh : AB // CD
Ta có :
(góc tương ứng của 𝛥ABM = 𝛥CDM)
Mà : ở vị trí so le trong
Nên : AB // CD
c) Chứng minh BK = DH
Xét 𝛥ABH và 𝛥CDK, ta có :
(cmt)
AB = CD (𝛥ABM = 𝛥CDM)
=> 𝛥ABH = 𝛥CDK (cạnh huyền – góc nhọn)
=> BH = CK (cạnh tương ứng)
https://olm.vn/hoi-dap/detail/67802117915.html
Bạn vào link này xem nhé
Học tốt!!!!!!!
M A B C D
a) Xét tam giác ABM và CDM có :
MA = MC ( gt )
MB = MD ( gt )
Góc AMB = góc CMD ( đối đỉnh )
=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm
b) Tam giác ABM = tam giác CDM
=> góc BAM = góc DCM
=> AB // CD ( so le )
c) Ta có :
BE =AB
=> B là trung điẻm AE
M là trung điểm AC
=> BM là đường trung bình tam giác ACE
=> BM = 1/2 .EC ( đpcm )
(tự vẽ hình )
câu 4:
a) có AB2 + AC2 = 225
BC2 = 225
Pytago đảo => \(\Delta ABC\)vuông tại A
b) Xét \(\Delta MAB\)và \(\Delta MDC\)
MA = MD (gt)
BM = BC ( do M là trung điểm của BC )
\(\widehat{AMB}=\widehat{CMD}\)( hai góc đối đỉnh )
=> \(\Delta MAB\)= \(\Delta MDC\) (cgc)
c) vì \(\Delta MAB\)= \(\Delta MDC\)
=> \(\hept{\begin{cases}AB=DC\\\widehat{MAB}=\widehat{MDC}\end{cases}}\)
=> AB// DC
lại có AB \(\perp\)AC => DC \(\perp\)AC => \(\Delta KCD\)vuông tại C
Xét \(\Delta\) vuông ABK và \(\Delta\)vuông KCD:
AB =CD (cmt)
AK = KC ( do k là trung điểm của AC )
=> \(\Delta\)vuông AKB = \(\Delta\)vuông CKD (cc)
=> KB = KD
d. do KB = KD => \(\Delta KBD\)cân tại K
=> \(\widehat{KBD}=\widehat{KDB}\)(1)
có \(\Delta ADC\)vuông tại C => \(AD=\sqrt{AC^2+DC^2}=15\)
=> MD = 7.5
mà MB = 7.5
=> MB = MD
=> \(\Delta MBD\)cân tại M
=> \(\widehat{MBD}=\widehat{MDB}\)(2)
Từ (1) và (2) => \(\widehat{KBD}-\widehat{MBD}=\widehat{KDB}-\widehat{MDB}\)hay \(\widehat{KBM}=\widehat{KDM}\)
Xét \(\Delta KBI\)và \(\Delta KDN\)có:
\(\widehat{KBI}=\widehat{KDN}\)(cmt)
\(\widehat{KBD}\)chung
KD =KB (cmt)
=> \(\Delta KBI\)= \(\Delta KDN\)(gcg)
=> KN =KI
=. đpcm
câu 5:
a) Xét \(\Delta ABM\)và \(\Delta MDC\):
MA=MD(gt)
MB=MC (M là trung điểm của BC)
\(\widehat{BMA}=\widehat{DMC}\)( đối đỉnh )
=> \(\Delta BMA=\Delta CMD\)(cgc)
b) Xét \(\Delta\)vuông ABC
có AM là đường trung tuyến của tam giác
=> \(AM=\frac{1}{2}BC\)mà \(BM=MC=\frac{1}{2}BC\)(do M là trung điểm của BC )
=> AM = BM = MC
có MA =MD => AM = MD =MB =MC
=> BM +MC = AM +MD hay BC =AD
Xét \(\Delta BAC\)và \(\Delta DCA\)
AB =DC
AC chung
BC =DC
=> \(\Delta BAC\)= \(\Delta DCA\)(ccc)
c. Xét \(\Delta ABM\)
BM=AM
\(\widehat{ABM}\)= 600
=> đpcm
Hình:
A B C M D E
a)Xét tam giác AMB và tam giác CMD:
Có AM=CM(gt) ;AMB=CMD(đói đỉnh);BM=DM(Gt)
=> tam giác AMB=tam giác CMD(c.G.c)
b)Vì tam giác AMB=tam giác CMD
=>BAM=DCM(hai góc tương ứng)
Mà BAM=90 Độ
=>DCM=90 độ
=>MC vuông góc với CD
mà Ba điểm A,M,C trùng nhau
=>AC vuông góc với CD(ĐPCM)
c) mình không biết cách làm
mong bạn k đúng cho mình nha
A B C M D k H K 1 2 1 2
a)XÉT TAM GIÁC ABM VÀ CDM
TA CÓ :\(\) AM=MC(vì là trung điểm của AC)
BM=DM (vì là tia đối)
AB=CD
\(\Rightarrow\)\(\Delta ABM=\Delta CDM\)(1)
b)vì \(\Delta ABM=\Delta CDM\) nên góc B=góc C(góc tương ứng)
\(\Rightarrow\)B=C(SO LE TRONG)\(\Rightarrow\)AB//CD(2)
c)xét \(\Delta ABKvà\Delta\)AMK có : K1=K2(VÌ LÀ GÓC XEN GIỮA)
AK CHUNG
BK=MK(VÌ AM=MB)(3)
XÉT \(\Delta HMCvà\Delta HDC\) có: H1=H2(VÌ LÀ GÓC XEN GIỮA)
HC CHUNG
MC=DC(VÌ MD= MC)(4)
TỪ 1234 TA CÓ : VÌ TAM GIÁC ABM=CDMVÀTỪ 3 VÀ 4;BM=MD\(\Rightarrow\)BK=HD
Lời giải:
a,Vì M là trung điểm AC nên MA=MC
MB=MD (gt)=>M là trung điểm của BD
Góc AMB=góc DMC (đối đỉnh)
=> tam giác ABM=tam giác CDM(c.g.c) (1)
b,vì tam giác ABC nhọn(gt)
=>góc B ,góc C nhọn
M là trung điểm của AC và BD
=>M là giao điểm 2 đường thẳng AC và BD
Từ. (1) => góc ABM=góc CDM (so le)
Góc MCD= góc BAM (so le)
Cạnh AB=CD
=>Tứ giác ABCD là hình bình hành
=>AB//CD
c,vì H và K là 2 điểm thuộc BD
mà BH =DK (gt)
Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD
=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)
=>AH//CK
=>góc AKH=góc CHK(2 góc ở vị trí so le)
=> tam giác AHK=tam giác CKH(c.g.c)
=>AK=CH