△ABC (AB<AC), M là trung điểm AC. Trên tia đối của tia MB, lấy D sao cho MD=MB.<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Tự vẽ hình nhé

a) Tam giác ABM và tam giác CDM có:

AM=CM ( M là trung điểm của AC)

MD=MB(gt)

góc AMB=góc DMC ( đối đỉnh)

Suy ra tam giác ABM = tam giác CDM (c-g-c)

b)Vì tam giác ABM = tam giác CDM ( chứng minh ở câu a)

Suy ra góc CDM= góc MBA (hai góc tương ứng)

Mà hai góc CDM và MBA la hai góc so le trong

Vậy AB // CD

c)Vì AK vuông góc với BD

CH vuông góc với BD

Suy ra AK // CH ( từ vuông góc đến song song)

Suy ra góc HCM=góc KAM ( hai góc so le trong)

Tam giác CKM= tam giác AHM(g-c-g)

Suy ra KM=HM(hai cạnh tương ứng)

Ta có K nằm giữa M và K

nên Bk+KM=BM (1)

Ta có H nằm giữa M và D

nên MH+HD=MD (2)

mà BM=MD( hai cạnh tương ứng của tam giác ABM và tam giác CDM) (3)

Từ (1),(2) và (3) suy ra BK=DH

25 tháng 11 2017

A B C M D k H K 1 2 1 2

a)XÉT TAM GIÁC ABM VÀ CDM

TA CÓ :\(\) AM=MC(vì là trung điểm của AC)

BM=DM (vì là tia đối)

AB=CD

\(\Rightarrow\)\(\Delta ABM=\Delta CDM\)(1)

b)vì \(\Delta ABM=\Delta CDM\) nên góc B=góc C(góc tương ứng)

\(\Rightarrow\)B=C(SO LE TRONG)\(\Rightarrow\)AB//CD(2)

c)xét \(\Delta ABKvà\Delta\)AMK có : K1=K2(VÌ LÀ GÓC XEN GIỮA)

AK CHUNG

BK=MK(VÌ AM=MB)(3)

XÉT \(\Delta HMCvà\Delta HDC\) có: H1=H2(VÌ LÀ GÓC XEN GIỮA)

HC CHUNG

MC=DC(VÌ MD= MC)(4)

TỪ 1234 TA CÓ : VÌ TAM GIÁC ABM=CDMVÀTỪ 3 VÀ 4;BM=MD\(\Rightarrow\)BK=HD

25 tháng 11 2017

nhớ tick đúng cho mình với

13 tháng 12 2017

Lời giải:

a,Vì M là trung điểm AC nên MA=MC

MB=MD (gt)=>M là trung điểm của BD

Góc AMB=góc DMC (đối đỉnh)

=> tam giác ABM=tam giác CDM(c.g.c) (1)

b,vì tam giác ABC nhọn(gt)

=>góc B ,góc C nhọn

M là trung điểm của AC và BD

=>M là giao điểm 2 đường thẳng AC và BD

Từ. (1)  => góc ABM=góc CDM (so le)

Góc MCD= góc BAM (so le)

Cạnh AB=CD

=>Tứ giác ABCD là hình bình hành

=>AB//CD

c,vì  H và K là 2 điểm thuộc BD

mà BH =DK (gt)

Từ A kẻ AH_|_ BD; từ C kẻ CK_|_BD

=> AH=CK( vì tam giác ABD=tam giác BCD co BD là cạnh chung)

=>AH//CK

=>góc AKH=góc CHK(2 góc ở vị trí so le)

=> tam giác AHK=tam giác CKH(c.g.c)

=>AK=CH

2 tháng 4 2018

nếu anh làm được bài này thi em có yêu anh ko

2 tháng 4 2018

thế này đúng ko

a) Chứng minh : 𝛥ABM = 𝛥CDM

Xét 𝛥ABM và 𝛥CDM :hinh hoc lop 7 - hai tam giac bang nhau

MA = MC (gt)

MB = MD (gt)

\widehat{AMB} =\widehat{DMC} (đối đinh)

=> 𝛥ABM =  𝛥CDM (c – g – c)

b) Chứng minh : AB // CD

Ta có :

\widehat{ABM} =\widehat{MDC} (góc tương ứng của 𝛥ABM =  𝛥CDM)

Mà : \widehat{ABM} ; \widehat{MDC} ở vị trí so le trong

Nên : AB // CD

c) Chứng minh BK = DH

Xét 𝛥ABH và 𝛥CDK, ta có :

\widehat{H} =\widehat{K}=90^0

\widehat{ABH} =\widehat{KDC} (cmt)

AB = CD (𝛥ABM =  𝛥CDM)

=> 𝛥ABH = 𝛥CDK (cạnh huyền – góc nhọn)

=> BH = CK (cạnh tương ứng)

https://olm.vn/hoi-dap/detail/67802117915.html

Bạn vào link này xem nhé

Học tốt!!!!!!!

27 tháng 3 2020

M A B C D

a) Xét tam giác ABM và CDM có : 

MA = MC ( gt ) 

MB = MD ( gt ) 

Góc AMB = góc CMD ( đối đỉnh ) 

=> tam giác ABM = tam giác CDM ( c - g - c ) => đpcm

b) Tam giác ABM = tam giác CDM 

=> góc BAM  = góc DCM 

=> AB // CD ( so le )

c) Ta có : 

BE =AB 

=> B là trung điẻm AE

  M là trung điểm AC 

=> BM là đường trung bình tam giác ACE 

=> BM = 1/2 .EC ( đpcm ) 

18 tháng 4 2017

A B C M D

a) Ta có : BC2 = AB2 + AC2

hay BC2 = 152 + 202

BC2 = 625

BC = 25

b) Xét \(\Delta ABM\)\(\Delta CDM\) :

AM = MC ( M là trung điểm của AC )

BM = MD (gt)

\(\widehat{AMB}=\widehat{CMD}\) ( 2 góc đối đinh )

=> \(\Delta ABM=\Delta CDM\left(c.g.c\right)\)

=> \(\widehat{BAM}=\widehat{DCM}=90^0\)

Hay DC \(\perp AC\)

18 tháng 4 2017

Mơn nhìu!

5 tháng 5 2019

A B C D M

a, xét tam giác AMB và tam giác  CMD có : MB = MD (gt)

AM = CM do AM là trung tuyến

góc AMB = góc CMD (đối đỉnh)

=> tam giác AMB = tam giác CMD (c-g-c)

=> AB = CD (đn)

a) Xét \(\Delta ABC\) vuông tại A

\(Bc^2=Ab^2+AC^2\Rightarrow AB^2=BC^2-AC^2=10^2-8^2\text{​​}\Rightarrow AB=6cm\)

b) Xét \(\Delta ABM\)\(\Delta CDM\) có:

\(AM=CM;\widehat{AMB}=\widehat{CMD};BM=DM\)

\(\Rightarrow\) \(\Delta ABM\) = \(\Delta CDM\)

\(\Rightarrow\) \(\widehat{BAM}=\widehat{DCM}=90^ohayAC\perp CD\)

c) Có : BC + DC > BD

mà BM = 2 BD ; DC = AB

\(\Rightarrow\) DC + BC > 2BM