Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết suy ra: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
\(\Rightarrow\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\left(\dfrac{1}{c}-\dfrac{1}{a+b+c}\right)=0\)
\(\Rightarrow\dfrac{a+b}{ab}+\dfrac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\) (a + b)[c(a + b + c) + ab] = 0
\(\Rightarrow\) (a + b)(ac + ab + bc + c2) = 0
\(\Rightarrow\) (a + b)(b + c)(a + c) = 0
P = (a2004 - b2004)(b2005 + c2005)(c2006 - a2006)
= (a + b)(b + c)(a + c) = 0
\(1=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=1+\left(b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}+\dfrac{a}{bc}\right)\)
\(\Leftrightarrow\left(b+c\right)\left(\dfrac{bc+ac+ab+a^2}{abc}\right)=0\)
\(\dfrac{\Leftrightarrow\left(b+c\right)\left(a+b\right)\left(a+c\right)}{abc}=0\Rightarrow\left[{}\begin{matrix}a=-c\\a=-b\\b=-c\end{matrix}\right.\)
Xét 3 TH
=> P=0 ( đề bài BT ở giữa có 1 số mũ sai nha )
1) Thay xyz = 1 , ta có :
\(\frac{1}{1+x+xy}+\frac{1}{1+y+yz}+\frac{1}{1+z+xz}=\frac{z}{z+xz+xyz}+\frac{xz}{xz+xyz+xyz^2}+\frac{1}{1+z+xz}\)
\(=\frac{z}{z+xz+1}+\frac{xz}{xz+1+z}+\frac{1}{z+xz+1}=\frac{z+xz+1}{z+xz+1}=1\)
2) Phân tích A thành nhân tử được \(A=\left(a-b\right)\left(b-c\right)\left(a-c\right)\left(a+b+c\right)\)
Vì a + b + c = 0 nên A = 0
3) Phân tích A thành \(\frac{\left(b-a\right)\left(a-c\right)\left(b-c\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=1\)
Có \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(\sqrt{a}.\frac{1}{\sqrt{a}}+\sqrt{b}.\frac{1}{\sqrt{b}}+\sqrt{c}.\frac{1}{\sqrt{c}}\right)^2\)(BĐT Bunhiacopxki)
\(=\left(1+1+1\right)^2=9\)
Vậy \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)>1\)
Vậy bài toán ko giải đc; Nếu mk làm sai thì thứ lỗi vì mk năm nay mới lên lớp 8
Ta có:
\(a\left(\frac{1}{b}+\frac{1}{c}\right)+b\left(\frac{1}{a}+\frac{1}{c}\right)+c\left(\frac{1}{a}+\frac{1}{b}\right)=-2\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Leftrightarrow a=-b;b=-c;c=-a\)
Với \(a=-b\)ta có
\(a^3+b^3+c^3=1\)
\(\Leftrightarrow c^3=1\)
\(\Leftrightarrow c=1\)
Thì ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a}-\frac{1}{a}+\frac{1}{c}=1\)
Tương tự cho 2 trường hợp còn lại được ĐPCM
a3 + b3 + c3 = 3abc
=> a3 + b3 +3a2b+ 3ab2 +c3-3abc-3a2b-3ab2=0
=>((a+b)3+c3)-3ab(a+b+c)=0
=>(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=0
=>(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
=>(a+b+c)(a2+b2+c2-ab-ac-bc)=0
*)TH1: a+b+c=0
=> c=-(a+b)
b=-(a+c)
a=-(b+c)
=>M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)
=>M=\(\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)\)=-1
*)TH2: a2+b2+c2-ac-bc-ab=0
=>2(a2+b2+c2-ac-bc-ab)=0
=>2a2+2b2+2c2-2ac-2bc-2ab=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>a=b=c
=>M=8
Vậy M=8 hoặc M =-1
chọn đúng giúp mình!
Bạn tham khảo :
Ta có :
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+3=1\)
\(\Rightarrow\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2=0\)
\(\Rightarrow abc\left(\frac{a}{b}+\frac{a}{c}+\frac{b}{a}+\frac{b}{c}+\frac{c}{a}+\frac{c}{b}+2\right)=abc.0\)
\(\Rightarrow a^2b+b^2c+a^2c+b^2a+c^2a+c^2b+2abc=0\)
\(\Rightarrow\left(a^2b+ab^2\right)+\left(b^2c+abc\right)+\left(a^2c+abc\right)+\left(c^2a+c^2b\right)=0\)
\(\Rightarrow ab\left(a+b\right)+bc\left(a+b\right)+ac\left(a+b\right)+c^2\left(a+b\right)=0\)
\(\Rightarrow\left(ab+bc+ac+c^2\right)\left(a+b\right)=0\)
\(\Rightarrow\left[\left(ab+bc\right)+\left(ac+c^2\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left[b\left(a+c\right)+c\left(a+c\right)\right]\left(a+b\right)=0\)
\(\Rightarrow\left(a+c\right)\left(b+c\right)\left(a+b\right)=0\)
TH1 : \(a+c=0\)
\(\Rightarrow a=-c\)
\(\Rightarrow c^{2006}=a^{2006}\)
\(\Rightarrow P=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)\left(c^{2006}-a^{2006}\right)\)
\(=\left(a^{2004}-b^{2004}\right)\left(b^{2005}+c^{2005}\right)0\)
\(=0\)
CMTT đều có \(P=0\)
Vậy ...
hay quá cảm ơn nha nhưng có cách nào gọn hơn ko