K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2015

a+ b3 + c3 = 3abc

=> a3 + b3 +3a2b+ 3ab2 +c3-3abc-3a2b-3ab2=0

=>((a+b)3+c3)-3ab(a+b+c)=0

=>(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=0

=>(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0

=>(a+b+c)(a2+b2+c2-ab-ac-bc)=0

*)TH1: a+b+c=0

          => c=-(a+b)

               b=-(a+c)

               a=-(b+c)

=>M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)

=>M=\(\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)\)=-1

*)TH2: a2+b2+c2-ac-bc-ab=0

  =>2(a2+b2+c2-ac-bc-ab)=0

 =>2a2+2b2+2c2-2ac-2bc-2ab=0

=>(a-b)2+(b-c)2+(c-a)2=0

=>a=b=c

=>M=8

               Vậy M=8 hoặc M =-1

             chọn đúng giúp mình!

19 tháng 5 2015

khó đấy , mình mới học lớp 6 thôi

(

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhh

hhhhhhhhhhhhh

4 tháng 10 2020

đề bài \(\Leftrightarrow\frac{bc}{a^2+8bc}+\frac{ca}{b^2+8ca}+\frac{ab}{c^2+8ab}\le\frac{1}{3}\)

\(\Leftrightarrow\left(\frac{1}{8}-\frac{bc}{a^2+8bc}\right)+\left(\frac{1}{8}+\frac{ca}{b^2+8ca}\right)+\left(\frac{1}{8}-\frac{ab}{c^2+8ab}\right)\ge\frac{1}{24}\)

\(\Leftrightarrow\frac{a^2}{a^2+8bc}+\frac{b^2}{b^2+8ca}+\frac{c^2}{c^2+8ab}\ge\frac{1}{3}\)

Mặt khác: vế trái \(\frac{a^2}{a^2+8bc}+\frac{b^2}{b^2+8ca}+\frac{c^2}{c^2+8ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+8\left(ab+bc+ca\right)}\)\(=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+6\left(ab+bc+ca\right)}\ge\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+2\left(a+b+c\right)^2}=\frac{1}{3}\)

=> đpcm

NV
30 tháng 5 2019

\(a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

\(\Rightarrow P=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{\left(-c\right)\left(-b\right)\left(-a\right)}{abc}=-1\)

TH2: \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

NV
30 tháng 5 2019

b/ \(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}+9.xyz=1\Leftrightarrow x+y+z+9=xyz\)

Không mất tính tổng quát, giả sử \(x\le y\le z\)

Nếu \(z< 3\Rightarrow VP\le8< 9< VT\Rightarrow ptvn\) \(\Rightarrow z\ge3\)

\(\Rightarrow x+y+z+9\le3z+9\le3\left(z+3\right)\le6z\Rightarrow xyz\le6z\)

\(\Rightarrow xy\le6\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;2\right);\left(1;3\right);\left(1;4\right);\left(1;5\right);\left(1;6\right);\left(2;3\right)\)

- Nếu \(\left(x;y\right)=\left(1;1\right)\Rightarrow z+11=z\left(l\right)\)

- Nếu \(\left(x;y\right)=\left(1;2\right)\Rightarrow z+12=2z\Rightarrow z=12\)

- Nếu \(\left(x;y\right)=\left(1;3\right)\Rightarrow z+13=3z\left(l\right)\)

- Nếu ....

21 tháng 8 2017

mình hướng dẫn thôi được không chứ mình đá bóng bị ngã nên giờ bấm giải chi tiết không nổi

21 tháng 8 2017

thôi mình sẽ giải chi tiết luôn nhé chứ hướng dẫn khó hiểu lắm

21 tháng 2 2019

:https://youtu.be/cs8x53kQFN4

21 tháng 2 2019

Đặt \(\hept{\begin{cases}a+b-c=x\\a+c-b=y\\b+c-a=z\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{x+y}{2}\\b=\frac{x+z}{2}\\c=\frac{y+z}{2}\end{cases}}\)

\(M=\frac{\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{3abc}\)

\(\Leftrightarrow M=\frac{xyz}{\frac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{2.2.2}}=\frac{8xyz}{3.\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)

Áp dụng BĐT AM-GM ta có:

\(M\le\frac{8xyz}{3.2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}=\frac{8xyz}{3.8xyz}=\frac{1}{3}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x=y\\y=z\\z=x\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b-c=a+c-b\\a+c-b=b+c-a\\a+b-c=b+c-a\end{cases}\Leftrightarrow\hept{\begin{cases}b=c\\a=b\\c=a\end{cases}}}\)

Vậy \(M_{max}=\frac{1}{3}\Leftrightarrow a=b=c\)

18 tháng 4 2020

:D

\(\frac{1}{a\left(a^2+8bc\right)}+\frac{1}{b\left(b^2+8ca\right)}+\frac{1}{c\left(c^2+ab\right)}\le\frac{1}{3abc}\)

\(\Leftrightarrow\frac{1}{\frac{a^2}{bc}+8}+\frac{1}{\frac{b^2}{ca}+8}+\frac{1}{\frac{c^2}{ab}+8}\le3\) (*)

Đặt \(\frac{a^2}{bc}=x;\frac{b^2}{ca}=y;\frac{c^2}{ab}=z\left(x,y,z>0\right)\)

(*)\(\Leftrightarrow\frac{1}{x+8}+\frac{1}{y+8}+\frac{1}{z+8}\le\frac{1}{3}\)

\(\Leftrightarrow16\left(x+y+z\right)+5\left(xy+yz+zx\right)\ge63\)(**)

(**) đúng bởi \(x+y+z\ge3\sqrt[3]{xyz}=3;xy+yz+zx\ge3\sqrt[3]{\left(xyz\right)^2}=3\)

10 tháng 3 2020

Đặt \(a=\frac{x}{y};b=\frac{y}{z};c=\frac{z}{x}\). Xét hiệu 2 vế:

\(VT-VP=\frac{\sum\limits_{cyc} x(y-z)^2}{4(x+y)(y+z)(z+x)} \geq 0\)

Ta có đpcm.