Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta xét 3 trường hợp:
TH1:a=0=>bc=0=> một trong 2 số b,c bằng 0 (trái với giả thiết,loại)
TH2:b=0=>a3=0<=>a=0(trái với giả thiết,loại)
TH3:c=0=>a3=-ab<=>a âm hoặc dương
TH3.1:a âm=> -ab âm <=> b dương (thỏa mãn đề bài)
TH3.2:a dương<=>-ab âm(trái với giả thiết,loại)
Vậy a là số âm,c=0 và b là số dương
TH1: a là dương; b là số âm; c là 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)
\(\Rightarrow a^2=b^5\) (vô lí)
TH2: a là 1 số âm, b là số dương, c là số 0
Ta có: \(a^2>0\)
\(\Rightarrow b^5-b^4c=b^5>0\)
\(\Rightarrow a^2=b^5\) (thỏa mãn)
Vậy trong 3 số a là số âm, b là số dương, c là số 0
giả sử a=0 ta có b(c-a)=0 suy ra b=0 hoặc c=a= 0 ( trái vs giả thiết )
giả sử b=0 thì a=0 ( trái vs giả thiết )
Vậy c=0
Vs c=0 khi đó a3=b(-a)
<=> a2=-b
mà a2 luôn lớn hơn 0 => b phải nhỏ hơn 0 => b là số âm
Còn lại a là số dương
Nếu:
|a| = b^2 (b - c) = 0
<=> a = 0; => (b - c)= 0 <=> b = c; loại (không phù hợp với đề bài)
|a| = b^2 (b - c) > 0
=> a và b # 0 => c = 0; => b^2 (b) > 0, mà b^2 > 0 nên => b > 0; => a < 0.