K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 6 2023

TH1: a là dương; b là số âm; c là 0

Ta có: \(a^2>0\)

\(\Rightarrow b^5-b^4c=b^5-b^4.0=b^5-0=b^5>0\)

\(\Rightarrow a^2=b^5\) (vô lí) 

TH2: a là 1 số âm, b là số dương, c là số 0

Ta có: \(a^2>0\)

\(\Rightarrow b^5-b^4c=b^5>0\)

\(\Rightarrow a^2=b^5\) (thỏa mãn)

Vậy trong 3 số a là số âm, b là số dương, c là số 0

15 tháng 6 2023

cc

26 tháng 8 2020

\(\left|a\right|=b^5-b^4c\)

<=> \(b^4\left(b-c\right)=\left|a\right|\ge0\)

+) TH1: Nếu a = 0 khi đó: 

\(\orbr{\begin{cases}b^4=0\\b=c\end{cases}}\)

Với b4 = 0 <=> b = 0 loại 

Với b = c loại vì 3 số khác nhau 

+) TH2: Nếu \(a\ne0\)

=> \(b^4\left(b-c\right)=\left|a\right|>0\)

<=> \(\hept{\begin{cases}b^4>0\\b-c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}b\ne0\\b>c\end{cases}}\)

=> c = 0; b > 0 => a < 0 

25 tháng 4 2019

Em chung họ nguyển với anh em xin được làm quen với anh NGUYỄN THÀNH NAM

19 tháng 3 2020

câu trả lời chả liên quan gì đến câu hỏi cả=_=

5 tháng 6 2015

 Nếu: 
  |a| = b^2 (b - c) = 0

<=> a = 0; => (b - c)= 0 <=> b = c; loại (không phù hợp với đề bài) 
  |a| = b^2 (b - c) > 0

=> a và b # 0 => c = 0;  => b^2 (b) > 0, mà b^2 > 0 nên => b > 0; => a < 0.

9 tháng 4 2018

Bài 1:

Vì trong 3 số nguyên a, b, c có 1 số dương, 1 số âm và 1 số = 0

Ta xét đẳng thức:  \(\left|a\right|=b^2.\left(b-c\right)\)(1)

=> a, b, c là số nguyên khác nhau

Nếu a = 0 thì => |a| = 0

=> Đẳng thức (1) trỏ thành: \(b^2.\left(b-c\right)=0\)

Mặt khác: 

Do b khác c nên 

b2 = 0 => b = 0

          => a = b = 0 (ko thỏa mãn đk.)

Nếu b = 0 thì đẳng thức (1) trở thành: 

|a| = 0 . (0 - c) 

|a| = 0 (ko thỏa mãn (a khác b))

Nếu c = 0 thì đẳng thức (1) trở thành:

|a| = b. b

|a| = b3

Do vì |a| > 0 (a khác 0)

=> b3 > 0

=> b > 0 (3 số lẻ)

=> a < 0

=> a là số dương, b là số âm, c là số 0

Bài 2:

\(n^2-3n^2-36< 0\)

\(\Leftrightarrow-2n^2-36< 0\)

\(\Leftrightarrow-2n^2< 36\)

\(\Leftrightarrow n^2>-18\)

\(\Rightarrow n^2-3n^2-36< 0\)với mọi số tự nhiên

9 tháng 4 2018

2/ \(A=\frac{\left(1-x\right)^4}{-x}\)

a) Nếu A là số dương

=> \(\frac{\left(1-x\right)^4}{-x}>0\)

=> \(\hept{\begin{cases}\left(1-x\right)^4>0\\-x>0\end{cases}}\)=> x < 0

Vậy nếu x < 0 thì A > 0

b) Nếu A là số âm

=> \(\frac{\left(1-x\right)^4}{-x}< 0\)

=> \(\orbr{\begin{cases}\left(1-x\right)^4< 0\left(1\right)\\-x< 0\left(2\right)\end{cases}}\)

Mà \(\left(1-x\right)^4\ge0\) với mọi giá trị của x

=> Không xảy ra (1) => -x < 0 => x > 0

Vậy nếu x > 0 thì A < 0.

c) Nếu A = 0

=> \(\frac{\left(1-x\right)^4}{-x}=0\)

=> (1 - x)4 = 0

=> 1 - x = 0

=> x = 1

Vậy nếu x = 1 thì A = 0.

Bài 1: (1,5 điểm) Tìm xa) 5x = 125;                b) 32x = 81;c) 52x-3 – 2.52 = 52.3;Bài 2: (1,5 điểm)Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5Bài 3: (1,5 điểm)Cho a là một số nguyên. Chứng minh rằng:a. Nếu a dương thì số liền sau a cũng dương.b. Nếu a âm thì số liền trước a cũng âm.c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?Bài...
Đọc tiếp

Bài 1: (1,5 điểm) Tìm x

a) 5x = 125;                b) 32x = 81;

c) 52x-3 – 2.52 = 52.3;

Bài 2: (1,5 điểm)

Cho a là số nguyên. Chứng minh rằng: |a| < 5 ↔ - 5 < a < 5

Bài 3: (1,5 điểm)

Cho a là một số nguyên. Chứng minh rằng:

a. Nếu a dương thì số liền sau a cũng dương.

b. Nếu a âm thì số liền trước a cũng âm.

c. Có thể kết luận gì về số liền trước của một số dương và số liền sau của một số âm?

Bài 4: (2 điểm)

Cho 31 số nguyên trong đó tổng của 5 số bất kỳ là một số dương. Chứng minh rằng tổng của 31 số đó là số dương.

Bài 5: (2 điểm)

      Cho các số tự nhiên từ 1 đến 11 được viết theo thứ tự tuỳ ý sau đó đem cộng mỗi số với số chỉ thứ tự của nó ta được một tổng. Chứng minh rằng trong các tổng nhận được, bao giờ cũng tìm ra hai tổng mà hiệu của chúng là một số chia hết cho 10.

Bài 6: (1,5 điểm)

     Cho tia Ox. Trên hai nữa mặt phẳng đối nhau có bờ là Ox. Vẽ hai tia Oy và Oz sao cho góc xOy và xOz bằng 1200. Chứng minh rằng:

a. Góc xOy = xOz = yOz

b. Tia đối của mỗi tia Ox, Oy, Oz là phân giác của góc hợp bởi hai tia còn lại.

0