Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giả sử a=0 ta có b(c-a)=0 suy ra b=0 hoặc c=a= 0 ( trái vs giả thiết )
giả sử b=0 thì a=0 ( trái vs giả thiết )
Vậy c=0
Vs c=0 khi đó a3=b(-a)
<=> a2=-b
mà a2 luôn lớn hơn 0 => b phải nhỏ hơn 0 => b là số âm
Còn lại a là số dương
\(\left|a\right|=b^5-b^4c\)
<=> \(b^4\left(b-c\right)=\left|a\right|\ge0\)
+) TH1: Nếu a = 0 khi đó:
\(\orbr{\begin{cases}b^4=0\\b=c\end{cases}}\)
Với b4 = 0 <=> b = 0 loại
Với b = c loại vì 3 số khác nhau
+) TH2: Nếu \(a\ne0\)
=> \(b^4\left(b-c\right)=\left|a\right|>0\)
<=> \(\hept{\begin{cases}b^4>0\\b-c>0\end{cases}}\Leftrightarrow\hept{\begin{cases}b\ne0\\b>c\end{cases}}\)
=> c = 0; b > 0 => a < 0
a) Để x là số dương
=> a - 3 > 0
a > 3
Vậy để \(x=\frac{a-3}{2}\)là số dương thì a > 3
b) Để x là số âm
=> a - 3 < 0
=> a < 3
Vậy để \(x=\frac{a-3}{2}\)là số âm thì a < 3
c) Để x = 0
\(\Rightarrow\frac{a-3}{2}=0\)
=> a - 3 = 0
a = 3
Vậy để x không âm cũng không dương thì a = 3
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0 Đ
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên S
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm S
d) 0 là số hữu tỉ dương S
a/b < c/d => ad < cb
=> ad + ab < bc + ab
=> a ( d+b) < b ( a +c)
=> a/b < a+ c/d +b (1)
* a/b < c/d => ad < cb
=> ad + cd < cb + cd
=> d ( a +c) < c ( b+d)
=> c/d > a + c/b + d (2)
Từ (1) và (2) => a/b < a+c/b + d < c/d
Ta xét 3 trường hợp:
TH1:a=0=>bc=0=> một trong 2 số b,c bằng 0 (trái với giả thiết,loại)
TH2:b=0=>a3=0<=>a=0(trái với giả thiết,loại)
TH3:c=0=>a3=-ab<=>a âm hoặc dương
TH3.1:a âm=> -ab âm <=> b dương (thỏa mãn đề bài)
TH3.2:a dương<=>-ab âm(trái với giả thiết,loại)
Vậy a là số âm,c=0 và b là số dương