Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét tứ giác AFBC có
N là trung điểm của AB
N là trung điểm của CF
Do đó: AFBC là hình bình hành
Suy ra: AF//BC và AF=BC
Xét tứ giác ADCB có
M là trung điểm của AC
M là trung điểm của DB
DO đó: ADCB là hình bình hành
Suy ra: AD//CB và AD=CB
Ta có: AF//BC
AD//BC
mà AD,AF có điểm chung là A
nên D,A,F thẳng hàng
mà AD=AF(=BC)
nên A là trung điểm của DF
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
![](https://rs.olm.vn/images/avt/0.png?1311)
Chứng minh EM=DM =1/2 BC(trong tam giác vuông đường trung tuyến ứng vs cạnh huyền bằng nửa cạnh huyền)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: BA=BE
DA=DE
=>BD là trung trực của AE
c: Xét ΔBFC có
FE,CA là đường cao
FE cắt CA tại D
=>D là trực tâm
=>BD vuông góc CF
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E H M
a/ Ta có : AM = ME , BM = MC
=> Tứ giác ABEC là hình bình hành => CE = AB (1)
Xét tam giác ABH và tam giác BHD có góc BHA = góc BHD = 90 độ , BH là cạnh chung , AH = HD
=> tam giác ABH = tam giác BHD (c.g.c) => AB =BD (2)
Từ (1) và (2) suy ra được BD = CE
b/ Từ câu a) ta có tam giác ABH = tam giác BHD (c.g.c) => góc ABH = góc BHD
=> BC là tia phân giác góc ABD
c/ Ta có \(\hept{\begin{cases}AH=HD\\BH\perp AD\end{cases}}\) => BH là đường trung trực của AD hay
BC là đường trung trực của AD.
A B C D E M I
Từ M dựng đường thẳng vuông góc với DE cắt DE tại I
Xét tg vuông BCE có
MB=MC \(\Rightarrow ME=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
Xét tg vuông BCD có
MB=MC \(\Rightarrow MD=\dfrac{BC}{2}\) (trong tg vuông trung tuyến thuộc cạnh huyền bằng nửa cạnh huyền)
\(\Rightarrow ME=MC=\dfrac{BC}{2}\) => tg MDE cân tại M
Ta có
\(MI\perp DE\) => MI là đường cao của tg cân MDE
=> MI là trung trực của DE (Trong tg cân đường cao xp từ đỉnh tg cân đồng thời là đường trung trực)
=> M thuộc đường trung trực của DE
cậu đăng kí kênh giúp tui nhé https://www.youtube.com/watch?v=te89p26aIGo&t=5s xin cậu đó