Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
Kẻ dường thẳng x đi qua trung điểm H của ED và BC => cần chứng minh x⊥ED
Lấy điểm I trên x sao cho DI=EI ( I nằm trên nửa mặt chứa A bờ ED )
=>ΔIEH = ΔIDH (= c.c.c)
=>EHI=IHD=180o : 2=90o
=>đpcm
Bạn tự vẽ hình nhé. Mình giải thôi.
1)Bạn chia 2 TH.
a) Góc MDB lớn hơn hoac bằng 60 độ
=>MD<MB mà ME>MC=MB
=>MD<ME.
b) Góc MDB nhỏ hơn 60 độ.
=> MD giao CA tại E .
Dễ dàng cminh DM<ME.
2) Ta có tam giác ABC cân tại A => AI là phân giác cũng là trung trực BC
=> AI trung trực BC. Mà AO là trung trục BC.
=> AI trùng AO.
=>OI là trung trực BC
Đè bài cần xem lại nhé.
3)Ta có góc B > góc C => AC>AB
Có AC đối dienj góc vuông trong tam giác vuông AEC => AC>CE
Tương tự AB>BD
Tất cả các điều => AC-AB>CE-BD
A B C D E H M
a/ Ta có : AM = ME , BM = MC
=> Tứ giác ABEC là hình bình hành => CE = AB (1)
Xét tam giác ABH và tam giác BHD có góc BHA = góc BHD = 90 độ , BH là cạnh chung , AH = HD
=> tam giác ABH = tam giác BHD (c.g.c) => AB =BD (2)
Từ (1) và (2) suy ra được BD = CE
b/ Từ câu a) ta có tam giác ABH = tam giác BHD (c.g.c) => góc ABH = góc BHD
=> BC là tia phân giác góc ABD
c/ Ta có \(\hept{\begin{cases}AH=HD\\BH\perp AD\end{cases}}\) => BH là đường trung trực của AD hay
BC là đường trung trực của AD.
Ta có hình vẽ:
A B C D E M H
a) Xét Δ CME và Δ BMA có:
EM = AM (gt)
CME = BMA (đối đỉnh)
CM = BM (gt)
Do đó, Δ CME = Δ BMA (c.g.c)
=> CE = AB (2 cạnh tương ứng) (1)
Chứng minh tương tự và => Δ ABH = Δ DBH (c.g.c)
=> AB = BD (2 cạnh tương ứng)
Từ (1) và (2) => CE = BD (đpcm)
b) Vì Δ ABH = Δ DBH (câu a) nên góc ABH = góc DBH (2 góc tương ứng)
=> BH là phân giác của góc ABD hay BC là phân giác của góc ABD (đpcm)
c) Vì \(AH\perp BC\) nên \(AD\perp BC\)
Mà AH = DH (gt)
Do đó, BC là đường trung trực của AD (đpcm)
a: Xét ΔADC và ΔAEB có
AD=AE
góc A chung
AC=AB
=>ΔADC=ΔAEB
b: Gọi giao của 3 đường trung trực trong ΔABC là O
=>OB=OC
Kẻ OK vuông góc BC, OK cắt DE tại M
=>OK là trung trực của BC
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
=>OM vuông góc DE tạiM
Xét ΔOBD và ΔOCE có
OB=OC
góc OBD=góc OCE
BD=CE
=>ΔOBD=ΔOCE
=>OE=OD
=>OM là trung trực của DE