Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/a + 1/b + 1/c = (bc + ac + ac)/abc = ab + bc + ca
=> a + b + c = ab + bc + ca
<=> a + b + c - ab - bc - ca = 0
<=> a + b + c - ab - bc - ac + abc - 1 = 0
<=> (a - ab) + (b - 1) + (c - bc) + (abc - ac) = 0
<=> -a(b - 1) + (b - 1) - c(b - 1) + ac(b - 1) = 0
<=> (b - 1)(-a + 1 -c + ac) = 0
<=> (b - 1)[ (-a + 1) + (ac - c) ] = 0
<=> (b - 1)[ -(a - 1) + c(a - 1) ] = 0
<=> (a - 1)(b - 1)(c - 1) = 0
<=> a - 1 = 0 hoặc b - 1 = 0 hoặc c - 1 = 0
<=> a = 1 hoặc b = 1 hoặc c = 1
Từ abc=1=>c=1/ab
Và a+b+c=1/a+1/b+1/c
<=>a+b+1/ab=1/a+1/b+ab
<=>ab-a-b+1-(1/ab-1/a-1/b+1)=0
<=>a(b-1)-(b-1)-1/a(1/b-1)-(1/b-1)=0
<=>(b-1)(a-1)-(1/b-1)(1/a-1)=0
<=>(a-1)(b-1)-(1-b/b)(1-a/a)=0
<=>(a-1)(b-1)-(a-1)(b-1)/ab=0
<=>(a-1)(b-1)(1-1/ab)=0
<=>(a-1)(b-1)(c-1)=0
<=>a-1=0 hoặc b-1=0 hoặc c-1=0
=>a=1 hoặc b=1 hoặc c=1 (đpcm)
\(a+b-\left(\frac{1}{a}+\frac{1}{b}\right)+c-\frac{1}{c}=0\)\(\Leftrightarrow\left(a+b\right)\left(1-\frac{1}{ab}\right)-\frac{\left(1-c\right)\left(1+c\right)}{c}=0\)
\(\Leftrightarrow\left(a+b\right)\left(1-c\right)-\frac{\left(1-c\right)\left(1+c\right)}{c}=0\)
\(\Leftrightarrow\left(1-c\right)\left(a+b-\frac{1+c}{c}\right)=0\Leftrightarrow\left(1-c\right)\left(a+b-\frac{abc+c}{c}\right)=0\)
\(\Leftrightarrow\left(1-c\right)\left(a+b-ab-1\right)=0\) \(\Leftrightarrow\left(1-c\right)\left(a\left(1-b\right)-\left(1-b\right)\right)=0\)
\(\Leftrightarrow\left(1-c\right)\left(1-b\right)\left(a-1\right)=0\Leftrightarrow\left[{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\)
Vậy trong 3 số có ít nhất 1 số bằng 1
Ta có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\)
\(\Leftrightarrow\frac{bc+ac+ab}{abc}=\frac{1}{a+b+c}\)( do a + b + c = 2017 )
\(\Rightarrow\left(a+b+c\right)\left(bc+ac+ab\right)=abc\)
\(\Leftrightarrow\left(bc+ac\right)\left(a+b+c\right)+ab\left(a+b\right)+abc-abc=0\)
\(\Leftrightarrow c\left(a+b\right)\left(a+b+c\right)+ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ac+bc+c^2+ab\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[b\left(c+a\right)+c\left(c+a\right)\right]=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Ta có : hoặc a+b =0
hoặc b+c =0
hoặc c+a = 0
Mà \(a+b+c=2017\)
\(\Rightarrow\)hoặc a = 2017; hoặc b = 2017 ; hoặc c = 2017
Vậy ...
Vừa làm vừa nháp nên bạn chú ý nhé !
ít nhất 1 trong 3 số bằng 1 thì ta nghĩ đến \(\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
\(\left(a-1\right)\left(b-1\right)\left(c-1\right)\)
\(=\left(ab-a-b+1\right)\left(c-1\right)\)
\(=abc-ab-ac-bc+a+b+c-1\)
\(=a+b+c-ab-bc-ca\) ( 1 )
Biến đổi giả thiết:\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Leftrightarrow a+b+c=\frac{ab+bc+ca}{abc}=ab+bc+ca\)
Khi đó ( 1 ) = 0 => đpcm
a
\(\left(n^2-8\right)^2+36\)
\(=n^4-16n^2+64+36\)
\(=\left(n^4+20n^2+100\right)-36n^2\)
\(=\left(n^2+10\right)^2-\left(6n\right)^2\)
\(=\left(n^2-6n+10\right)\left(n^2+6n+10\right)\)
Để \(\left(n^2-8\right)^2+36\) là SNT thì \(n^2-6n+10=1\left(h\right)n^2+6n+10=1\)
Mà n là số tự nhiên nên \(n^2+6n+10>n^2-6n+10\)
\(\Rightarrow n^2-6n+10=1\Leftrightarrow n^2-6n+9=0\)
\(\Leftrightarrow\left(n-3\right)^2=0\Leftrightarrow n=3\)
Thay n=3 vào cái ban đầu ta được \(\left(n^2-8\right)^2+36=37\) ( là số nguyên tố )
b/\(a+b+c=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(\Rightarrow a+b+c=\frac{ab+bc+ca}{abc}\)
\(\Rightarrow a+b+c=ab+bc+ca\)
\(\Rightarrow a+b+c-ab-bc-ca=0\)
\(\Rightarrow abc+a+b+c-ab-bc-ca-1=0\)
\(\Rightarrow\left(a-ab\right)+\left(b-1\right)+\left(c-bc\right)+\left(abc-ac\right)=0\)
\(\Rightarrow-a\left(b-1\right)+\left(b-1\right)-c\left(b-1\right)+ac\left(b-1\right)=0\)
\(\Rightarrow\left(b-1\right)\left(-a+1-c+ac\right)=0\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\left(c-1\right)=0\)
<=> a-1 =0 hoặc b-1 =0 hoặc c-1=0
<=> a=1 hoặc b=1 hoặc c=1
Vậy trong 3 số a,b,c có ít nhất 1 số bằng 1
Thay a+b+c=2017 vào \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\) ta có:
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Rightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)\(\Rightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)\(\Rightarrow\left(a+b\right)\left(\frac{c\left(a+b+c\right)+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left(\frac{c\left(b+c\right)+ca+ab}{abc\left(a+b+c\right)}\right)=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+ca+ab\right]=0\)
\(\Rightarrow\left(a+b\right)\left[c\left(b+c\right)+a\left(b+c\right)\right]=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
\(\Rightarrow\)\(a+b=0\) hoặc \(b+c=0\) hoặc \(c+a=0\)
\(\Rightarrow\)\(c=2017\)hoặc \(a=2017\) hoặc \(b=2017\left(đpcm\right)\)
Ta có \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\Leftrightarrow\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{c}-\frac{1}{a+b+c}\right)=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{\left(a+b+c\right)c}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)=0\)
mà \(\left(\frac{1}{ab}+\frac{1}{\left(a+b+c\right)c}\right)\ne0\)với mọi a,b,c
\(\Rightarrow\)a+b=0\(\Leftrightarrow\)a=-b là hai số đối nhau (1)
từ đó được \(a^n=-b^n\)với mọi n lẻ.
Khi đó \(\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\Leftrightarrow\frac{1}{c^n}=\frac{1}{c^n}\)luôn đúng (2)
Từ (1)và(2) ta được đpcm
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)
\(\Rightarrow\frac{1}{a+b+c}=\frac{bc+ca+ab}{abc}\)
\(\Rightarrow\left(a+b+c\right)\left(bc+ca+ab\right)=abc\)
\(\Rightarrow abc+a^2c+a^2b+b^2c+abc+ab^2+bc^2+ac^2+abc=abc\)
\(\Rightarrow2abc+a^2c+a^2b+b^2c+ab^2+bc^2+ac^2=0\)
\(\Rightarrow\left(abc+a^2b\right)+\left(ac^2+a^2c\right)+\left(b^2c+b^2a\right)+\left(bc^2+abc\right)=0\)
\(\Rightarrow ab\left(a+c\right)+ac\left(a+c\right)+b^2\left(a+c\right)+bc\left(a+c\right)=0\)
\(\Rightarrow\left(ab+ac+b^2+bc\right)\left(a+c\right)=0\)
\(\Rightarrow\left[\left(ab+ac\right)+\left(b^2+bc\right)\right]\left(a+c\right)=0\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
Do đó trong a , b , c luôn có 2 số đối nhau.
Phần 2 : Do vai trò a , b , c như nhau nên coi \(a=-b\)( Do có 2 số đối nhau)
\(\Rightarrow a^n=-b^n\)(Vì n lẻ )
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{a^n+b^n}{a^n.b^n}+\frac{1}{c^n}=0+\frac{1}{c^n}=\frac{1}{c^n}\)
\(\frac{1}{a^n+b^n+c^n}=\frac{1}{\left(a^n+b^n\right)+c^n}=\frac{1}{0+c^n}=\frac{1}{c^n}\)
\(\Rightarrow\frac{1}{a^n}+\frac{1}{b^n}+\frac{1}{c^n}=\frac{1}{a^n+b^n+c^n}\)
Vậy ...
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{n}=\frac{1}{a+b+c}\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}-\frac{1}{a+b+c}=0\)
\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b+c-c}{c\left(a+b+c\right)}=0\)
\(\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{ac+bc+c^2}\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(ab+ac+bc+c^2\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0\Rightarrow c=n-a-b=n\\b+c=0\Rightarrow a=n\\a+c=0\Rightarrow b=n\end{matrix}\right.\)