\(\frac{1}{a}\)-\(\frac{1}{b}\)-
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 1 2021

Ta có \(\frac{1}{a}-\frac{1}{b}-\frac{1}{c}=\frac{1}{a-b-c}\)

=> \(\frac{1}{a}-\frac{1}{b}=\frac{1}{a-b-c}+\frac{1}{c}\)

=> \(\frac{b-a}{ab}=\frac{a-b}{\left(a-b-c\right)c}\)

Khi b - a = 0

=> (b - a)(a - c)(b + c) = 0 (1)

Khi b - a \(\ne0\)

=> ab = -(a - b - c).c

=> ab = -ac + bc + c2 

=> ab + ac - bc - c2 = 0

=> a(b + c) - c(b + c) = 0

=> (a - c)(b + c) = 0

=> (b - a)(a - c)(b + c) = 0 (2)

Từ (1)(2) => (b - a)(a - c)(b + c) = 0

=> b - a = 0 hoặc a - c = 0 hoặc b + c = 0

=> a = b hoặc a = c hoặc b = -c

Vậy tồn tại 2 số bằng nhau hoặc đối nhau

6 tháng 4 2017

1 bai thoi cung dc

14 tháng 6 2017

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}=\frac{1}{a+b+c}\left(a+b+c=2017.\right)\)

\(\Rightarrow\frac{a+b}{ab}+\frac{1}{c}-\frac{1}{a+b+c}=0\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\Leftrightarrow\left(a+b\right)\left(\frac{1}{ab}+\frac{1}{c\left(a+b+c\right)}\right)=0\)

\(\Rightarrow\orbr{\begin{cases}a+b=0\\\frac{1}{ab}+\frac{1}{ac+bc+c^2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}c=2017\\ab=-\left(ac+bc+c^2\right)\Rightarrow ab+ac+bc+c^2=0\end{cases}}}\)

\(\Leftrightarrow\orbr{\begin{cases}c=2017\\\left(a+c\right)\left(b+c\right)=0\Rightarrow\orbr{\begin{cases}a+c=0=>b=2017\\b+c=0=>a=2017\end{cases}}\end{cases}}\)\(=>\orbr{\begin{cases}c=2017\\\left(a+c\right)\left(b+c\right)=0=>\orbr{\begin{cases}a+c=0\\b+c=0\end{cases}< =>\orbr{\begin{cases}b=2017\\a=2017\end{cases}}}\end{cases}}\)=>c=2017 hoặc (a+c)(b+c)=0

=>hoặc c=2017,hoặc a=b=2017

=>đpcm

14 tháng 6 2017

\(â+b+c=2017\Rightarrow a+b=2017-c\)

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2017}\Rightarrow\frac{a+b}{ab}=\frac{c-2017}{2017c}=\frac{2017-c}{ab}\)

\(\Leftrightarrow\left(c-2017\right)\left(\frac{1}{ab}+\frac{1}{2017c}\right)=0\Leftrightarrow\left(c-2017\right)\left(\frac{1}{ab}+\frac{1}{2017\left(2017-a-b\right)}\right)=0\)

\(\Rightarrow\frac{\left(a-2017\right)\left(b-2017\right)\left(c-2017\right)}{abc}=0\)

Do đó tồn tại ít nhất một số trong các số đã cho bằng 2017

13 tháng 1 2020

T>a có : \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

=>\(\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

=> \(\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

=> \(ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)=abc\)

=> \(a^2b+ab^2+abc+abc+b^2c+bc^2+ca^2+abc+ac^2=abc\)

=> \(a^2b+ab^2+b^2c+bc^2+ca^2+ac^2+2abc=0\)

=> \(\left(a^2b+2abc+bc^2\right)+\left(ab^2+2abc+ac^2\right)+\left(b^2c-2abc+ca^2\right)=0\)

=> \(b\left(a+c\right)^2+a\left(b+c\right)^2+c\left(a-b\right)^2=0\)

=> \(\hept{\begin{cases}a+c=0\\b+c=0\\a-b=0\end{cases}\Rightarrow\hept{\begin{cases}a=-c\\b=-c\\a=b\end{cases}}}\)

=> trong 3 số a,b,c có  2 số đối nhau  ( đpcm)

Thay a=-c ,b = -c vào \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{\left(-c\right)^{2019}}+\frac{1}{\left(-c\right)^{2019}}+\frac{1}{c^{2019}}\)

                                                                                    \(=-\frac{1}{c^{2019}}\)(1)

\(\frac{1}{a^{2019}+b^{2019}+c^{2019}}=\frac{1}{\left(-c\right)^{2019}+\left(-c\right)^{2019}+c^{2019}}=-\frac{1}{c^{2019}}\)  (2)

Từ (1),(2) => \(\frac{1}{a^{2019}}+\frac{1}{b^{2019}}+\frac{1}{c^{2019}}=\frac{1}{a^{2019}+b^{2019}+c^{2019}}\)  (đpcm)

13 tháng 1 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{a+b}{ab}+\frac{a+b}{c\left(a+b+c\right)}=0\)

\(\Leftrightarrow\left(a+b\right)\left[ab+c\left(a+b+c\right)\right]=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a=-b\left(h\right)b=-c\left(h\right)c=-a\)

Thay vào tính nốt

30 tháng 8 2019

Đặt \(\left(\frac{a-b}{c},\frac{b-c}{a},\frac{c-a}{b}\right)\rightarrow\left(x,y,z\right)\)

Khi đó:\(\left(\frac{c}{a-b},\frac{a}{b-c},\frac{b}{c-a}\right)\rightarrow\left(\frac{1}{x},\frac{1}{y},\frac{1}{z}\right)\)

Ta có:

\(P\cdot Q=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=3+\frac{y+z}{x}+\frac{z+x}{y}+\frac{x+y}{z}\)

Mặt khác:\(\frac{y+z}{x}=\left(\frac{b-c}{a}+\frac{c-a}{b}\right)\cdot\frac{c}{a-b}=\frac{b^2-bc+ac-a^2}{ab}\cdot\frac{c}{a-b}\)

\(=\frac{c\left(a-b\right)\left(c-a-b\right)}{ab\left(a-b\right)}=\frac{c\left(c-a-b\right)}{ab}=\frac{2c^2}{ab}\left(1\right)\)

Tương tự:\(\frac{x+z}{y}=\frac{2a^2}{bc}\left(2\right)\)

\(=\frac{x+y}{z}=\frac{2b^2}{ac}\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) ta có:
\(P\cdot Q=3+\frac{2c^2}{ab}+\frac{2a^2}{bc}+\frac{2b^2}{ac}=3+\frac{2}{abc}\left(a^3+b^3+c^3\right)\)

Ta có:\(a+b+c=0\)

\(\Rightarrow\left(a+b\right)^3=-c^3\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

Khi đó:\(P\cdot Q=3+\frac{2}{abc}\cdot3abc=9\)

30 tháng 8 2019

Mách mk nốt 2 bài kia vs

30 tháng 8 2019

3/ Ta có:

\(x+y+z=0\)

\(\Rightarrow x^2=\left(y+z\right)^2;y^2=\left(z+x\right)^2;z^2=\left(x+y\right)^2\)

\(a+b+c=0\)

\(\Rightarrow a+b=-c;b+c=-a;c+a=-b\)

\(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\)

\(\Leftrightarrow ayz+bxz+cxy=0\)

Ta có:

\(ax^2+by^2+cz^2=a\left(y+z\right)^2+b\left(z+x\right)^2+c\left(x+y\right)^2\)

\(=x^2\left(b+c\right)+y^2\left(c+a\right)+z^2\left(a+b\right)+2\left(ayz+bzx+cxy\right)\)

\(=-ax^2-by^2-cz^2\)

\(\Leftrightarrow2\left(ax^2+by^2+cz^2\right)=0\)

\(\Leftrightarrow ax^2+by^2+cz^2=0\)

30 tháng 8 2019

1/ Đặt \(a-b=x,b-c=y,c-z=z\)

\(\Rightarrow x+y+z=0\)

Ta có:

\(\frac{1}{\left(a-b\right)^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{\left(c-a\right)^2}=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+\frac{2\left(x+y+z\right)}{xyz}\)

\(=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}+2\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\right)=\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\)

5 tháng 12 2020

xin lỗi, viết nhầm, a+b+c=1 chứ ko phải bằng 0 nha

DD
5 tháng 12 2020

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow\frac{ab+bc+ca}{abc}=1\Rightarrow ab+bc+ca=abc\)\

Ta có: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

                                                                 \(=ab+bc+ca-abc=0\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

Từ đây ta suy ra đpcm. 

12 tháng 4 2018

Áp dụng BĐT AM-GM ta có:

\(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\)

\(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\)

\(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\)

Dấu "=" <=> \(a=b=c=1\)

12 tháng 4 2018

\(Áp dụng BĐT AM-GM ta có: \(\frac{a+1}{b^2+1}=\left(a+1\right)-\frac{b^2\left(a+1\right)}{b^2+1}\ge\left(a+1\right)-\frac{b^2\left(a+1\right)}{2b}\) \(=\left(a+1\right)-\frac{ab+b}{2}\). Tương tự cho 2 BĐT còn lại rồi cộng theo vế: \(VT\ge3+\left(a+b+c\right)-\frac{ab+bc+ca+a+b+c}{2}\) \(\ge3+\left(a+b+c\right)-\frac{\frac{\left(a+b+c\right)^2}{3}+a+b+c}{2}=3\) Dấu "=" <=> \(a=b=c=1\)\)