Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tam giác AHB và tam giác DBH có:
AH=BD (giả thiết)
Góc AHB=góc DBH (=90o)
BH là cạnh chung
=> Tam giác AHB = tam giác DBH (c.g.c)
b) Theo chứng minh phần a: Tam giác AHB = tam giác DBH => Góc ABH = góc BHD (2 góc tương ứng)
Mà góc ABH và góc BHD là 2 góc so le trong => AB//DH
c) Tam giác ABH có: \(\widehat{BAH}+\widehat{AHB}+\widehat{ABH}=180^o\) (tổng 3 góc trong tam giác)
=>\(35^o+90^o+\widehat{ABH}=180^o\Rightarrow\widehat{ABH}=180^o-35^o-90^o=55^o\)
Tam giác ABC có: \(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180^o\)(tổng 3 góc trong tam giác)
=>\(90^o+\widehat{ACB}+55^o=180^o\Rightarrow\widehat{ACB}=180^o-90^o-55^o=35^o\)
Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Hình tự vẽ -.-
a) Xét hai tam giác vuông ABH và DHB có:
AH = BD (gt)
HB : cạnh chung
Do đó: \(\Delta ABH=\Delta DHB\)(hai cạnh góc vuông)
b) Vì \(\Delta ABH=\Delta DHB\) (câu a)
=> Góc AHB = DBH = 50 độ ( 2 góc tương ứng)
Trong tam giác vuông BHD có:
\(\widehat{BHD}+\widehat{HBD}+\widehat{HDB}=180^o\)
Thay: 50 + 90 + HDB = 180
=> HDB = 180 - 90 - 50 = 40
c) Gọi giao điểm của HD và AC là K
Ta có: \(AH\perp HB;BD\perp HB\)=> AH // BD
=> Góc KHA = HDB = 40 (1)
Trong tam giác HBA vuông tại H. Ta có:
HAB + ABH = 90
HAB = 90 - ABH = 90 - 50 = 40 (1)
(1) và (2) suy ra: HAB = KHA = 40. Mà chúng so le trong.
Do đó: KD // AB => HKA = CAB = 90 (so le trong)
=> DH vuông góc AC
=>
ko biết