\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=2\)

Tìm giá tr...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)

Tương tự: \(\frac{1}{1+b}\ge\frac{2\sqrt{ca}}{\sqrt{\left(1+c\right)\left(1+a\right)}};\frac{1}{1+c}\ge\frac{2\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\)

Nhân theo vế các BĐT vừa đánh giá (2 vế đều khác 0) ta được:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow8abc\le1\Rightarrow abc\le\frac{1}{8}\). Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{2}.\)

17 tháng 10 2020

2. \(BĐT\Leftrightarrow\frac{1}{1+\frac{2}{a}}+\frac{1}{1+\frac{2}{b}}+\frac{1}{1+\frac{2}{c}}\ge1\)

Đặt\(\frac{2}{a}=x;\frac{2}{b}=y;\frac{2}{c}=z\)thì \(\hept{\begin{cases}x,y,z>0\\xyz=8\end{cases}}\)

Ta cần chứng minh \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge1\Leftrightarrow\left(yz+y+z+1\right)+\left(zx+z+x+1\right)+\left(xy+x+y+1\right)\ge xyz+\left(xy+yz+zx\right)+\left(x+y+z\right)+1\)\(\Leftrightarrow x+y+z\ge6\)(Đúng vì \(x+y+z\ge3\sqrt[3]{xyz}=6\))

Đẳng thức xảy ra khi x = y = z = 2 hay a = b = c = 1

17 tháng 10 2020

3. Ta có: \(a+b+c\le\sqrt{3}\Rightarrow\left(a+b+c\right)^2\le3\)

Ta có đánh giá quen thuộc \(\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)

Từ đó suy ra \(ab+bc+ca\le1\)

\(A=\frac{\sqrt{a^2+1}}{b+c}+\frac{\sqrt{b^2+1}}{c+a}+\frac{\sqrt{c^2+1}}{a+b}\ge\frac{\sqrt{a^2+ab+bc+ca}}{b+c}+\frac{\sqrt{b^2+ab+bc+ca}}{c+a}+\frac{\sqrt{c^2+ab+bc+ca}}{a+b}\)\(=\frac{\sqrt{\left(a+b\right)\left(a+c\right)}}{b+c}+\frac{\sqrt{\left(b+a\right)\left(b+c\right)}}{c+a}+\frac{\sqrt{\left(c+a\right)\left(c+b\right)}}{a+b}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}}=3\)Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)

20 tháng 5 2018

Ta có: \(\frac{1}{a+b+1}=\left(1-\frac{1}{b+c+1}\right)+\left(1-\frac{1}{c+a+1}\right)=\frac{b+c}{b+c+1}+\frac{c+a}{c+a+1}\) 

\(\Rightarrow\frac{1}{a+b+1}\ge2\sqrt{\frac{\left(b+c\right)\left(c+a\right)}{\left(b+c+1\right)\left(c+a+1\right)}}\) 

Tương tự \(\frac{1}{b+c+1}\ge2\sqrt{\frac{\left(c+a\right)\left(a+b\right)}{\left(c+a+1\right)\left(a+b+1\right)}}\) 

               \(\frac{1}{c+a+1}\ge2\sqrt{\frac{\left(a+b\right)\left(b+c\right)}{\left(a+b+1\right)\left(b+c+1\right)}}\)  

Nhân từng vế ta có: \(\frac{1}{a+b+1}.\frac{1}{b+c+1}.\frac{1}{c+a+1}\ge\frac{8\left(a+b\right)\left(b+c\right)\left(c+a\right)}{\left(a+b+1\right)\left(b+c+1\right)\left(c+a+1\right)}\) 

\(\Rightarrow P=\left(a+b\right)\left(b+c\right)\left(c+a\right)\le\frac{1}{8}\)  

tích mình đi

làm ơn

rùi mình

tích lại

thanks

27 tháng 7 2018

k mk đi 

30 tháng 8 2021

B3 mk tìm đc cách giải r nhưng bạn nào muốn thì trả lời cg đc

31 tháng 8 2021

Các bạn giải giúp mình B2 và B5 nhé. Mấy bài kia mình giải được rồi.

29 tháng 6 2017

Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)

\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)

\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)

\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)

29 tháng 6 2017

Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.

7 tháng 11 2017

GT => (a+1)(b+1)(c+1)=(a+1)+(b+1)+(c+1)

Đặt \(\frac{1}{a+1}=x,\frac{1}{1+b}=y,\frac{1}{c+1}=z\), ta cần tìm min của\(\frac{x}{x^2+1}+\frac{y}{y^2+1}+\frac{z}{z^2+1}\)với xy+yz+zx=1

\(\Leftrightarrow\frac{x\left(y+z\right)+y\left(z+x\right)+z\left(x+y\right)}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\Leftrightarrow\frac{2}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)Mà  (x+y)(y+z)(z+x) >= 8/9 (x+y+z)(xy+yz+xz) >= \(\frac{8\sqrt{3}}{9}\) nên \(M\)=< \(\frac{3\sqrt{3}}{4}\),dấu bằng xảy ra khi a=b=c=\(\sqrt{3}-1\)

2 tháng 6 2020

Theo giả thiết, ta có: \(abc+ab+bc+ca=2\)

\(\Leftrightarrow abc+ab+bc+ca+a+b+c+1=a+b+c+3\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)\left(c+1\right)=\left(a+1\right)+\left(b+1\right)+\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{\left(a+1\right)\left(b+1\right)}+\frac{1}{\left(b+1\right)\left(c+1\right)}+\frac{1}{\left(c+1\right)\left(a+1\right)}=1\)

Đặt \(\left(a+1;b+1;c+1\right)\rightarrow\left(\frac{\sqrt{3}}{x};\frac{\sqrt{3}}{y};\frac{\sqrt{3}}{z}\right)\). Khi đó giả thiết bài toán được viết lại thành xy + yz + zx = 3 

Ta có: \(M=\Sigma_{cyc}\frac{a+1}{a^2+2a+2}=\Sigma_{cyc}\frac{a+1}{\left(a+1\right)^2+1}\)\(=\Sigma_{cyc}\frac{1}{a+1+\frac{1}{a+1}}=\Sigma_{cyc}\frac{1}{\frac{\sqrt{3}}{x}+\frac{x}{\sqrt{3}}}\)

\(=\sqrt{3}\left(\frac{x}{x^2+3}+\frac{y}{y^2+3}+\frac{z}{z^2+3}\right)\)

\(=\sqrt{3}\text{​​}\Sigma_{cyc}\left(\frac{x}{x^2+xy+yz+zx}\right)=\sqrt{3}\Sigma_{cyc}\frac{x}{\left(x+y\right)\left(x+z\right)}\)

\(\le\frac{\sqrt{3}}{4}\Sigma_{cyc}\left(\frac{x}{x+y}+\frac{x}{x+z}\right)=\frac{3\sqrt{3}}{4}\)

Đẳng thức xảy ra khi \(x=y=z=1\)hay \(a=b=c=\sqrt{3}-1\)