K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2019

\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=2\Leftrightarrow\frac{1}{1+a}=\frac{b}{1+b}+\frac{c}{1+c}\ge\frac{2\sqrt{bc}}{\sqrt{\left(1+b\right)\left(1+c\right)}}\)

Tương tự: \(\frac{1}{1+b}\ge\frac{2\sqrt{ca}}{\sqrt{\left(1+c\right)\left(1+a\right)}};\frac{1}{1+c}\ge\frac{2\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\)

Nhân theo vế các BĐT vừa đánh giá (2 vế đều khác 0) ta được:

\(\frac{1}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\ge\frac{8abc}{\left(1+a\right)\left(1+b\right)\left(1+c\right)}\)

\(\Rightarrow8abc\le1\Rightarrow abc\le\frac{1}{8}\). Dấu "=" xảy ra khi và chỉ khi \(a=b=c=\frac{1}{2}.\)

20 tháng 2 2021

Áp dụng bổ đề quen thuộc \(x^3+y^3\ge xy\left(x+y\right)\), ta được: \(\frac{1}{2a^3+b^3+c^3+2}=\frac{1}{\left(a^3+b^3\right)+\left(a^3+c^3\right)+2}\le\frac{1}{ab\left(a+b\right)+ac\left(a+c\right)+2}\)\(=\frac{bc}{ab^2c\left(a+b\right)+abc^2\left(a+c\right)+2bc}=\frac{bc}{b\left(a+b\right)+c\left(a+c\right)+2bc}\)\(\le\frac{bc}{ab+ac+4bc}=\frac{bc}{b\left(a+c\right)+c\left(a+b\right)+2bc}\)\(\le\frac{1}{9}\left(\frac{bc}{b\left(a+c\right)}+\frac{bc}{c\left(a+b\right)}+\frac{bc}{2bc}\right)=\frac{1}{9}\left(\frac{c}{a+c}+\frac{b}{a+b}+\frac{1}{2}\right)\)(1)

Tương tự, ta có: \(\frac{1}{a^3+2b^3+c^3+2}\le\frac{1}{9}\left(\frac{c}{b+c}+\frac{a}{a+b}+\frac{1}{2}\right)\)(2); \(\frac{1}{a^3+b^3+2c^3+2}\le\frac{1}{9}\left(\frac{b}{b+c}+\frac{a}{a+c}+\frac{1}{2}\right)\)(3)

Cộng theo vế ba bất đẳng thức (1), (2), (3), ta được: \(P\le\frac{1}{9}\left(1+1+1+\frac{3}{2}\right)=\frac{1}{2}\)

Vậy giá trị lớn nhất của P là \(\frac{1}{2}\)đạt được khi x = y = z = 1

31 tháng 10 2018

\(A=\frac{ab}{a+c+b+c}+\frac{bc}{a+b+a+c}+\frac{ca}{a+b+b+c}\)

\(\le\frac{1}{4}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ca}{a+b}+\frac{ca}{b+c}\right)\)

\(=\frac{1}{4}\left(a+b+c\right)=\frac{1}{4}\)

Nên max A là \(\frac{1}{4}\) khi \(a=b=c=\frac{1}{3}\)

11 tháng 11 2017

Ta có:

\(\frac{a+1}{1+b^2}=a+1-\frac{\left(a+1\right)b^2}{1+b^2}\ge a+1-\frac{\left(a+1\right)b^2}{2b}=a+1-\frac{ab+b}{2}\left(1\right)\)

Tương tụ ta có:

\(\hept{\begin{cases}\frac{\left(b+1\right)}{1+c^2}\ge b+1-\frac{bc+c}{2}\left(2\right)\\\frac{\left(c+1\right)}{1+a^2}\ge c+1-\frac{ca+a}{2}\left(3\right)\end{cases}}\)

Từ (1), (2), (3) ta có:

\(M\ge a+b+c+3-\frac{ab+bc+ca+a+b+c}{2}\)

\(=3+3-\frac{ab+bc+ca+3}{2}\)

\(\ge\frac{9}{2}-\frac{\left(a+b+c\right)^2}{6}=3\)

13 tháng 6 2019

Khó 😩 hay suy nghỉ mà đau 🦁🦁🦁🦁

13 tháng 6 2019

\(\frac{1}{\sqrt{1+a^2}}=\frac{\sqrt{bc}}{\sqrt{bc+a.abc}}=\frac{\sqrt{bc}}{\sqrt{bc+a\left(a+b+c\right)}}=\frac{\sqrt{bc}}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

Tương tự và cộng lại \(\Rightarrow P\le\frac{3}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\sqrt{3}\)

9 tháng 12 2017

ab+bc+ca=3abc <=> ab+bc+ca-3abc=0 <=> ab-abc+bc-abc+ca-abc=0 <=> ab(1-c)+bc(1-a)+ca(1-b)=0

Vì a,b,c dương => \(\hept{\begin{cases}1-c=0< =>c=1\\1-a=0< =>a=1\\1-b=0< =>b=1\end{cases}}\)

Thay a,b,c vừa tìm được vào biểu thức P <=> P=3/2

9 tháng 12 2017

áp dụng BDT cô si ta có

\(a^2+1>=2a\)

\(b^2+1>=2b\)

\(c^2+1>=2c\)

do đó P<=\(\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

=\(\frac{1}{2}.\frac{3abc}{abc}=1,5\)

dấu = xảy ra khi và chỉ khi a=b=c=1

13 tháng 7 2019

Cần chứng minh: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)\)

Thật vậy: \(\sqrt{a^2-ab+b^2}\ge\frac{1}{2}\left(a+b\right)^2\Leftrightarrow4\left(a^2-ab+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow4a^2-4ab+4b^2-a^2-b^2-2ab\ge0\Leftrightarrow3\left(a^2+b^2-2ab\right)\ge0\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Áp dụng:\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ac+a^2}}\)

\(\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(c+a\right)}=2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{a+c}\right)=3\)

Dấu "=" xảy ra khi: \(a=b=c=1\)