\(a^3+b^3=35\)tính

a, \(a^2+b^2\)

b,

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2016

Các cặp số cho ra kết quả a+b=5 là:0 và 5,1 và 4,2 và 3.

0^3+5^3=125(loại).1^3+4^3=65(loại)2^3+3^3=35(đúng)

Vậy a=2,b=3,a^2+b^2=2^2+3^2=13

a^4+b^4=2^4+3^4=97

                     Đáp số:a,13

                                b,97

18 tháng 12 2016

Ta co: a=2, b=3

a) a^2+b^2= 13

b) a^4+b^4= 97

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500

 

11 tháng 8 2017

a, \(a+b=10\Rightarrow\left(a+b\right)^2=10^2\Rightarrow a^2+2ab+b^2=100\)

\(\Rightarrow a^2+b^2=100-2ab\Rightarrow a^2+b^2=100-2.4\Rightarrow a^2+b^2=100-8\)

\(\Rightarrow a^2+b^2=92\). Vậy \(a^2+b^2=92\)

b, \(a+b=10\Rightarrow\left(a+b\right)^3=10^3\Rightarrow a^3+3a^2b+3ab^2+b^3=1000\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=1000\Rightarrow a^3+b^3+3.4.10=1000\)

\(\Rightarrow a^3+b^3+120=1000\Rightarrow a^3+b^3=880\). Vậy \(a^3+b^3=880\)

c, \(a+b=10\Rightarrow\left(a+b\right)^4=10000\)

\(\Rightarrow a^4+4a^3b+6a^2b^2+4ab^3+b^4=10000\)

\(\Rightarrow a^4+b^4+4ab\left(a^2+b^2\right)+6\left(ab\right)^2=10000\)

\(\Rightarrow a^4+b^4+4.4.92+6.4^2=10000\Rightarrow a^4+b^4+992+96=10000\)

\(\Rightarrow a^4+b^4=8912\). Vậy \(a^4+b^4=8912\)

d, \(a+b=10\Rightarrow\left(a+b\right)^5=100000\)

\(\Rightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=100000\)

\(\Rightarrow a^5+b^5+5ab\left(a^3+b^3\right)+10a^2b^2\left(a+b\right)=100000\)

\(\Rightarrow a^5+b^5+5.4.880+10.4^2.10=100000\)

\(\Rightarrow a^5+b^5+17600+1600=100000\Rightarrow a^5+b^5=80800\)

Vậy \(a^5+b^5=80800\)

12 tháng 8 2017

tks bạn ^^

13 tháng 8 2020

a) A = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b)

= 23 - 3.(-1).2 = 8 + 6 = 14

b) B = a4 + b4 = a4 - 2a2b2 + b4 + 2a2b2 = (a2 - b2)2 + 2a2b2 

= (a - b)2(a + b)2 + 2(ab)2 = (a2 - 2ab + b2)(a + b)2 + 2(ab)2

= (a + b)4 + 2(ab)2 - 4ab(a + b)2 = 24 + 2.(-1)2 - 4.(-1).22 = 16 + 2 + 16 = 34

c) Ta có: a2 + b2 = (a2 + 2ab + b2) - 2ab = (a + b)2 - 2ab = 22 - 2.(-1) = 4 + 2 = 6

=> (a2 + b2)(a3 + b3) =  6.14 = 84

=> a5 + a2b3 + a3b2 + b5 = a5 + b5 + a2b2(a + b) = 84

=>C = 84 - (ab)2(a + b) = 84 - (-1)2.2 = 82

d) D = a6 + b6 = a6 + 3a4b2 + 3a2b4 + a6 - 3a2b2(a2 + b2) = (a2 + b2)3 - 3(ab)2(a2 + b2) = 63 - 3(-1)2. 6 = 198

13 tháng 8 2020

a) Ta có : a + b = 2

=> (a + b)3 = 8

=> a3 + b3 + 3a2b + 3ab2 = 8

=> a3 + b3 + 3ab(a + b) = 8

=> a3 + b3 - 6 = 8

=> a3 + b3 = 14

b) Ta có a + b = 2

=> (a + b)4  = 16

=> a4 + b4 + 4a3b + 4ab3 = 16

=> a4 + b4 + 4ab(a2 + b2) = 16 (1)

Lại có a + b = 2

=> (a + b)2 = 4

=> a2 + b2 + 2ab = 4

=> a2 + b2 = 6

Khi đó (1) <=> a4 + b4 - 24 = 16

=> a4 + b4 = 40

c) a + b = 2

=> (a + b)5 = 32

=> a5 + b5 + 5a4b + 5ab4 = 32

=> a5 + b5 + 5ab(a3 + b3) = 32

Vận dụng kết quả câu b

=> a5 + b5 - 70 = 32 

a5 + b5 = 102

d) a + b = 2

=> (a + b)6 = 64

=> a6 + b6 + 6a5b + 6ab5 = 64

=> a6 + b6 + 6ab(a4 + b4) = 64

Vận dụng kết quả câu c 

=> a6 + b6 - 240 = 64

=> a6 + b6 = 304

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

23 tháng 10 2017

=a, a(b2+c2)+b(a2+c2)+c(a2+b2)+2abc

= ab2+ac2+ba2+bc2+ca2+cb2+2abc

= c2(a+b)+ab(a+b)+c(a2+b2+2ab)

= c2(a+b)+ab(a+b)+c(a+b)2

= (a+b)\(\left[c^2+ab+c\left(a+b\right)\right]\)

= (a+b)(c2+ab+ca+cb)

= (a+b)\(\left[c\left(a+c\right)+b\left(a+c\right)\right]\)

=(a+b)(a+c)(b+c)

b, a(b-c)3+b(c-a)3+c(a-b)3

= a(b-c)3-b\(\left[\left(b-c\right)+\left(a-b\right)\right]\)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)2(a-b)-3b(b-c)(a-b)2-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(b-c+a-b)-b(a-b)3+c(a-b)3

= a(b-c)3-b(b-c)3-3b(b-c)(a-b)(a-c)-b(a-b)3+c(a-b)3

= (b-c)3(a-b)-3b(b-c)(a-b)(a-c)-(a-b)3(b-c)

= (b-c)(a-b)\(\left[\left(b-c\right)^2-3b\left(a-c\right)-\left(a-b\right)^2\right]\)

=(b-c)(a-b)(b2-2bc+c2-3ab+3bc-a2+2ab-b2)

= (b-c)(a-b)(c2-a2+bc-ab)

= (b-c)(a-b)\(\left[\left(c-a\right)\left(c+a\right)+b\left(c-a\right)\right]\)

= (b-c)(a-b)(c-a)(c+a+b)

c, a2b2(a-b)+b2c2(b-c)+c2a2(c-a)

= a2b2(a-b)-b2c2\(\left[\left(a-b\right)+\left(c-a\right)\right]\)+c2a2(c-a)

= a2b2(a-b)-b2c2(a-b)-b2c2(c-a)+c2a2(c-a)

= b2(a-b)(a2-c2)+c2(c-a)(a2-b2)

= b2(a-b)(a-c)(a+c)-c2(a-c)(a-b)(a+b)

= (a-c)(a-b)\(\left[b^2\left(a+c\right)-c^2\left(a+b\right)\right]\)

= (a-c)(a-b)(b2a+b2c-c2a-c2b)

= (a-c)(a-b)\(\left[a\left(b^2-c^2\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)\(\left[a\left(b-c\right)\left(b+c\right)+bc\left(b-c\right)\right]\)

= (a-c)(a-b)(b-c)\(\left[a\left(b+c\right)+bc\right]\)

= (a-c)(a-b)(b-c)(ab+ac+bc)

d, a4(b-c)+b4(c-a)+c4(a-b)

= a4(b-c)-b4[(b-c)+(a-b)]+c4(a-b)
= (b-c)(a4-b4)+(a-b)(c4-b4)
= (b-c)(a2-b2)(a2+b2)+(a-b)(c2-b2)(c2+b2)
= (b-c)(a-b)(a+b)(a^2+b^2)-(a-b)(b-c)(b+c)(b2+c2)
= (b-c)(a-b)(a3+ab2+ba2+b3-bc2-b3-cb2-c3)

= (b-c)(a-b)(a3+ab2+ba2-bc2-c3-cb2)
= (b-c)(a-b)(a3-c3)+b2(a-c)+b(a2-c2)
= (b-c)(a-b)(a-c)(a2+ac+c2)+b2(a-c)+b(a-c)(a+c)
= (b-c)(a-b)(a-c)(a2+ac+c2+b2+ab+ac)

= (a-b)(b-c)(c-a)(a2+b2+c2+ab+bc+ca)

4 tháng 10 2018

bạn làm giỏi thế có phương pháo nào ko mách mk

17 tháng 6 2019

\(A=\)\(x^5-70x^4-70^3+70x+29\)

\(=x^5-\left(x-1\right)x^4-\left(x-1\right)x^3+\left(x-1\right)x+29\)

\(=x^5-x^5+x^4-x^4+x^3+x^2-x+29\)

\(=x^3+x^2-x+29\)

.........

17 tháng 6 2019

\(B=x^5-36x^4+37x^3-69x^2-34x+15\)

\(=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x-1\right)^2-\left(x-1\right)x+15\)

\(=x^5-x^5-x^4+x^4+2x^3-4x^2+4x-1-x^2+x+15\)

\(=2x^3-5x^2+5x+15\)

...........

25 tháng 9 2016

tất cả các số bé kia là mũ nha các bạn(số 2,3 ấy)

26 tháng 9 2016

1. biến đổi vế trái 

= a2x2 + a2y2 + b2x2 + b2y2 

= (ax -by)2 + (bx+ ay)2 - 2abxy + 2abxy 

= (ax -by)2 + ( bx + ay)2 = vế phải( dpcm)

NM
2 tháng 6 2021

áp dụng bất đẳng thức bunhia ta có :

\(\left(a+b+c\right)\left(a^3+b^3+c^3\right)\ge\left(a^2+b^2+c^2\right)^2\)

mà ta có dấu bằng xảy ra vậy ta có \(\frac{a^3}{a}=\frac{b^3}{b}=\frac{c^3}{c}\Leftrightarrow a=b=c\)

thay lại ta có \(a=b=c=1\Rightarrow a^5+b^5+c^5=3\)