\(a^3+b^3\)

b) B= \(a...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2020

a) A = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b)

= 23 - 3.(-1).2 = 8 + 6 = 14

b) B = a4 + b4 = a4 - 2a2b2 + b4 + 2a2b2 = (a2 - b2)2 + 2a2b2 

= (a - b)2(a + b)2 + 2(ab)2 = (a2 - 2ab + b2)(a + b)2 + 2(ab)2

= (a + b)4 + 2(ab)2 - 4ab(a + b)2 = 24 + 2.(-1)2 - 4.(-1).22 = 16 + 2 + 16 = 34

c) Ta có: a2 + b2 = (a2 + 2ab + b2) - 2ab = (a + b)2 - 2ab = 22 - 2.(-1) = 4 + 2 = 6

=> (a2 + b2)(a3 + b3) =  6.14 = 84

=> a5 + a2b3 + a3b2 + b5 = a5 + b5 + a2b2(a + b) = 84

=>C = 84 - (ab)2(a + b) = 84 - (-1)2.2 = 82

d) D = a6 + b6 = a6 + 3a4b2 + 3a2b4 + a6 - 3a2b2(a2 + b2) = (a2 + b2)3 - 3(ab)2(a2 + b2) = 63 - 3(-1)2. 6 = 198

13 tháng 8 2020

a) Ta có : a + b = 2

=> (a + b)3 = 8

=> a3 + b3 + 3a2b + 3ab2 = 8

=> a3 + b3 + 3ab(a + b) = 8

=> a3 + b3 - 6 = 8

=> a3 + b3 = 14

b) Ta có a + b = 2

=> (a + b)4  = 16

=> a4 + b4 + 4a3b + 4ab3 = 16

=> a4 + b4 + 4ab(a2 + b2) = 16 (1)

Lại có a + b = 2

=> (a + b)2 = 4

=> a2 + b2 + 2ab = 4

=> a2 + b2 = 6

Khi đó (1) <=> a4 + b4 - 24 = 16

=> a4 + b4 = 40

c) a + b = 2

=> (a + b)5 = 32

=> a5 + b5 + 5a4b + 5ab4 = 32

=> a5 + b5 + 5ab(a3 + b3) = 32

Vận dụng kết quả câu b

=> a5 + b5 - 70 = 32 

a5 + b5 = 102

d) a + b = 2

=> (a + b)6 = 64

=> a6 + b6 + 6a5b + 6ab5 = 64

=> a6 + b6 + 6ab(a4 + b4) = 64

Vận dụng kết quả câu c 

=> a6 + b6 - 240 = 64

=> a6 + b6 = 304

7 tháng 9 2018

B1:a)(3x-5)2-(3x+1)2=8

[(3x-5)+(3x+1)].[(3x-5)-(3x+1)]=8

(3x-5+3x+1)(3x-5-3x-1)=8

9x2-15x-9x2-3x-15x+25+15x+5+9x2-15x-9x2-3x+3x-5-3x-1=8

-36x+24=8

-36x=8-24=16

x=16:(-36)=\(\dfrac{-4}{9}\)

Bài 5: 

a: \(=\left(xy-u^2v^3\right)\left(xy+u^2v^3\right)\)

b: \(=\left(2xy^2-3xy^2+1\right)\left(2xy^2+3xy^2-1\right)\)

\(=\left(1-xy^2\right)\left(5xy^2-1\right)\)

Bài 6:

a: \(\left(a+b+c-d\right)\left(a+b-c+d\right)\)

\(=\left(a+b\right)^2+\left(c-d\right)^2\)

\(=a^2+2ab+b^2+c^2-2cd+d^2\)

b: \(\left(a+b-c-d\right)\left(a-b+c-d\right)\)

\(=\left(a-d\right)^2-\left(b-c\right)^2\)

\(=a^2-2ad+d^2-b^2+2bc-c^2\)

11 tháng 8 2017

a, \(a+b=10\Rightarrow\left(a+b\right)^2=10^2\Rightarrow a^2+2ab+b^2=100\)

\(\Rightarrow a^2+b^2=100-2ab\Rightarrow a^2+b^2=100-2.4\Rightarrow a^2+b^2=100-8\)

\(\Rightarrow a^2+b^2=92\). Vậy \(a^2+b^2=92\)

b, \(a+b=10\Rightarrow\left(a+b\right)^3=10^3\Rightarrow a^3+3a^2b+3ab^2+b^3=1000\)

\(\Rightarrow a^3+b^3+3ab\left(a+b\right)=1000\Rightarrow a^3+b^3+3.4.10=1000\)

\(\Rightarrow a^3+b^3+120=1000\Rightarrow a^3+b^3=880\). Vậy \(a^3+b^3=880\)

c, \(a+b=10\Rightarrow\left(a+b\right)^4=10000\)

\(\Rightarrow a^4+4a^3b+6a^2b^2+4ab^3+b^4=10000\)

\(\Rightarrow a^4+b^4+4ab\left(a^2+b^2\right)+6\left(ab\right)^2=10000\)

\(\Rightarrow a^4+b^4+4.4.92+6.4^2=10000\Rightarrow a^4+b^4+992+96=10000\)

\(\Rightarrow a^4+b^4=8912\). Vậy \(a^4+b^4=8912\)

d, \(a+b=10\Rightarrow\left(a+b\right)^5=100000\)

\(\Rightarrow a^5+5a^4b+10a^3b^2+10a^2b^3+5ab^4+b^5=100000\)

\(\Rightarrow a^5+b^5+5ab\left(a^3+b^3\right)+10a^2b^2\left(a+b\right)=100000\)

\(\Rightarrow a^5+b^5+5.4.880+10.4^2.10=100000\)

\(\Rightarrow a^5+b^5+17600+1600=100000\Rightarrow a^5+b^5=80800\)

Vậy \(a^5+b^5=80800\)

12 tháng 8 2017

tks bạn ^^

21 tháng 3 2019

Ý 3 bạn bỏ dòng áp dụng....ta có nhé

\(a^2+b^2+c^2+d^2\ge a\left(b+c+d\right)\)

\(\Leftrightarrow\left(\frac{a^2}{4}-2.\frac{a}{2}b+b^2\right)+\left(\frac{a^2}{4}-2.\frac{a}{2}c+c^2\right)+\)\(\left(\frac{a^2}{4}-2.\frac{a}{d}d+d^2\right)+\frac{a^2}{4}\ge0\forall a;b;c;d\)

\(\Leftrightarrow\left(\frac{a}{2}-b\right)+\left(\frac{a}{2}-c\right)+\)\(\left(\frac{a}{2}-d\right)^2+\frac{a^2}{4}\ge0\forall a;b;c;d\)( luôn đúng )

Dấu " = " xảy ra <=> a=b=c=d=0

6) Sai đề

Sửa thành:\(x^2-4x+5>0\)

\(\Leftrightarrow\left(x-2\right)^2+1>0\)

7) Áp dụng BĐT AM-GM ta có:

\(a+b\ge2.\sqrt{ab}\)

Dấu " = " xảy ra <=> a=b

\(\Leftrightarrow\frac{ab}{a+b}\le\frac{ab}{2.\sqrt{ab}}=\frac{\sqrt{ab}}{2}\)

Chứng minh tương tự ta có:

\(\frac{cb}{c+b}\le\frac{cb}{2.\sqrt{cb}}=\frac{\sqrt{cb}}{2}\)

\(\frac{ca}{c+a}\le\frac{ca}{2.\sqrt{ca}}=\frac{\sqrt{ca}}{2}\)

Dấu " = " xảy ra <=> a=b=c

Cộng vế với vế của các BĐT trên ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\)

Áp dụng BĐT AM-GM ta có:

\(\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ca}{c+a}\le\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}\le\frac{\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}}{2}=\frac{2\left(a+b+c\right)}{4}=\frac{a+b+c}{2}\)

Dấu " = " xảy ra <=> a=b=c

21 tháng 3 2019

1)\(x^3+y^3\ge x^2y+xy^2\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)

\(\Leftrightarrow x^2-xy+y^2\ge xy\) ( vì x;y\(\ge0\))

\(\Leftrightarrow x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge0\) (luôn đúng )

\(\Rightarrow x^3+y^3\ge x^2y+xy^2\)

Dấu " = " xảy ra <=> x=y

2) \(x^4+y^4\ge x^3y+xy^3\)

\(\Leftrightarrow x^4-x^3y+y^4-xy^3\ge0\)

\(\Leftrightarrow x^3\left(x-y\right)-y^3\left(x-y\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(x^2+xy+y^2\right)\ge0\)( luôn đúng )

Dấu " = " xảy ra <=> x=y

3) Áp dụng BĐT AM-GM ta có:

\(\left(a-1\right)^2\ge0\forall a\Leftrightarrow a^2-2a+1\ge0\)\(\forall a\Leftrightarrow\frac{a^2}{2}+\frac{1}{2}\ge a\forall a\)

\(\left(b-1\right)^2\ge0\forall b\Leftrightarrow b^2-2b+1\ge0\)\(\forall b\Leftrightarrow\frac{b^2}{2}+\frac{1}{2}\ge b\forall b\)

\(\left(a-b\right)^2\ge0\forall a;b\Leftrightarrow a^2-2ab+b^2\ge0\)\(\forall a;b\Leftrightarrow\frac{a^2}{2}+\frac{b^2}{2}\ge ab\forall a;b\)

Cộng vế với vế của các bất đẳng thức trên ta được:

\(a^2+b^2+1\ge ab+a+b\)

Dấu " = " xảy ra <=> a=b=1

4) \(a^2+b^2+c^2+\frac{3}{4}\ge a+b+c\)

\(\Leftrightarrow\left[a^2-2.a.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[b^2-2.b.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\)\(+\left[c^2-2.c.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]\ge0\forall a;b;c\)

\(\Leftrightarrow\left(a-\frac{1}{2}\right)^2\)\(+\left(b-\frac{1}{2}\right)^2\)\(+\left(c-\frac{1}{2}\right)^2\ge0\forall a;b;c\)( luôn đúng)

Dấu " = " xảy ra <=> a=b=c=1/2

Câu 1:

Ta có: \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\dfrac{\left(a+b\right)^2}{2^2}-ab\ge0\)

\(\Leftrightarrow\dfrac{a^2+2ab+b^2-4ab}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab+b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\left(\dfrac{a+b}{2}\right)^2\ge ab\) (1)

Ta có: \(\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\)

\(\Leftrightarrow\dfrac{a^2+b^2}{2}-\dfrac{\left(a+b\right)^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{2a^2-2b^2-a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{a^2-2ab-b^2}{4}\ge0\)

\(\Leftrightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\)

\(\left(a-b\right)^2\ge0\forall a,b\)

\(\Rightarrow\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\)

\(\Rightarrow\dfrac{a^2+b^2}{2}\ge\left(\dfrac{a+b}{2}\right)^2\) (2)

Từ (1) và (2) \(\Rightarrow ab\le\left(\dfrac{a+b}{2}\right)^2\le\dfrac{a^2+b^2}{2}\)

23 tháng 3 2018

5 , a3+b3+c3\(\ge\) 3abc

\(\Leftrightarrow\) a3+3a2b+3ab2+b3+c3-3a2b-3ab2-3abc\(\ge\) 0

\(\Leftrightarrow\) (a+b)3+c3-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+2ab+b2-ac-bc+c2)-3ab(a+b+c) \(\ge0\)

\(\Leftrightarrow\) (a+b+c)(a2+b2+c2-ab-bc-ca)\(\ge0\) (1)

ta co : a,b,c>0 \(\Rightarrow\)a+b+c>0 (2)

(a-b)2+(b-c)2+(c-a)2\(\ge0\)

<=> 2a2+2b2+2c2-2ac-2cb-2ab\(\ge0\)

<=>a2+b2+c2-ab-bc-ac\(\ge\) 0 (3)

Từ (1)(2)(3)=> pt luôn đúng

8 tháng 7 2018

a) Đặt \(A=\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=2.\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(2A=\left(3^4-1\right)...\left(3^{16}+1\right)\left(3^{32}+1\right)\)

\(...\)

\(2A=\left(3^{32}-1\right)\left(3^{32}+1\right)\)

\(2A=3^{64}-1\)

\(A=\frac{3^{64}-1}{2}\)

21 tháng 7 2016

Bài 2 :

Ta có: (10a + 5)2 = (10a)2 + 2 .10a . 5 + 52

                          = 100a2 + 100a + 25

                          = 100a(a + 1) + 25.

Cách tính nhẩm bình thường của một số tận cùng bằng chữ số 5;

Ta gọi a là số chục của số tự nhiên có tận cùng bằng 5 => số đã cho có dạng 10a + 5 và ta được

(10a + 5)2 = 100a(a + 1) + 25

Vậy để tính bình phương của một số tự nhiên có tận cùng bởi chữ số 5 ta tính tích a(a + 1) rồi viết 25 vào bên phải.

Áp dụng;

- Để tính 252 ta tính 2(2 + 1) = 6 rồi viết tiếp 25 vào bên phải ta được 625.

- Để tính 352 ta tính 3(3 + 1) = 12 rồi viết tiếp 25 vào bên phải ta được 1225.

- 652 = 4225

- 752 = 5625.

 

21 tháng 7 2016

Bài 4 : 

a) 342 + 662 + 68 . 66 = 342 + 2 . 34 . 66 + 662 = (34 + 66)2 = 1002 = 10000.

b) 742 + 242 – 48 . 74 = 742 - 2 . 74 . 24 + 242 = (74 - 24)

 =502 =2500