![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)
\(\Leftrightarrow a^2+b^2\ge2\).
Dấu \(=\)khi \(a=b=1\).
b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)
\(\Leftrightarrow a^4+b^4\ge2\)
Dấu \(=\)khi \(a=b=1\).
c) Bạn làm tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(ab>a+b\)
\(\Leftrightarrow ab-a-b+1>1\)
\(\Leftrightarrow a\left(b-1\right)-\left(b-1\right)>1\)
\(\Leftrightarrow\left(a-1\right)\left(b-1\right)>1\)(luôn đúng với a,b>2)
a > 2, b > 2 => ab > 2a
a > 2, b > 2 => ab > 2b
\(\Rightarrow2ab>2\left(a+b\right)\)
\(\Rightarrow ab>a+b\left(dpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:
\(a+b\ge2\sqrt{ab}\)
\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 1: Từ a+b>2 => a > 2 - b
\(\Rightarrow a^2>\left(2-b\right)^2=b^2-4b+4\)
\(\Rightarrow a^2+b^2>2b^2-4b+4=2\left(b^2-2b+1\right)+2=2\left(b-1\right)^2+2\)
Vì \(\left(b-1\right)^2\ge0\) nên \(2\left(b-1\right)^2+2\ge2\)
Suy ra \(a^2+b^2>2\)
Cách 2:
Áp dụng BĐT Bunhia Copxki ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2>2^2\)
\(\Rightarrow2\left(a^2+b^2\right)>4\)
\(\Rightarrow a^2+b^2>2\)
Vì a + b > 2
\(\Rightarrow\) (a + b)\(^2\) > 2(a + b)
\(\Leftrightarrow\) a\(^2\) + 2ab + b\(^2\) > 2(a + b)
\(\Leftrightarrow\) a\(^2\) + b\(^2\) > 2(a + b) - 2ab (1)
Mà 2(a+b) - 2ab > 2 (2)
Từ (1) và (2), áp dụng tính chất bằng cầu, ta có:
a\(^2\) + b\(^2\)> 2
![](https://rs.olm.vn/images/avt/0.png?1311)
1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi \(a=b=1\)
2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)
Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)
Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)
Dấu "=" xảy ra khi a = b = c = 1
\(a+b=2\Rightarrow b=2-a\)
\(\Rightarrow a^2+b^2=a^2+\left(2-a\right)^2=2a^2-4a+4=2\left(a-1\right)^2+2\ge2\) (đpcm)
Dấu "=" xảy ra khi \(a=b=1\)
a+b=2⇒b=2−aa+b=2⇒b=2−a
⇒a2+b2=a2+(2−a)2=2a2−4a+4=2(a−1)2+2≥2⇒a2+b2=a2+(2−a)2=2a2−4a+4=2(a−1)2+2≥2 (đpcm)
Dấu "=" xảy ra khi a=b=1