![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: a^2 + b^2 = (a+b)^2 - 2ab
= 1^2 - 2ab
= 1/2(2-4ab)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có :
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)
\(\Rightarrow(a+b)^2\ge4ab\)
\(\Rightarrow(a-b)^2\ge0(đpcm)\)
Mình để cho dấu lớn bằng để dễ hiểu nha bạn
c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)
Dấu " = "xảy ra khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)
Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm
Còn câu b và d bạn tự làm nhé
Chúc bạn học tốt
\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)
\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)
\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)
\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)
dấu ''='' xảy ra khi và chỉ khi a=b
\(b,x+\frac{1}{x}\ge2\)
\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)
\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)
dấu''='' xảy ra khi và chỉ khi x=1
áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên) =>GTNN là 2
dấu ''='' xay ra khi và chỉ khi x=1
\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)
=> GTNN là 1 tại x=2
\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)
vì -(x+2 )-6 <-6
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(a^4+3>4a\)
<=> \(a^4-4a+3>0\)
<=> \(a^4-a^3+a^3-a^2+a^2-a-3a+3>0\)
<=> \(a^3\left(a-1\right)+a^2\left(a-1\right)+a\left(a-1\right)-3\left(a-1\right)\)
<=> \(\left(a-1\right)\left(a^3+a^2+a-3\right)>0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:
\(\left(\dfrac{a}{b}+\dfrac{b}{c}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+2.\dfrac{a}{b}.\dfrac{b}{c}\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}\ge\dfrac{2a}{c}\left(1\right)\)
Tương tự:
\(\left(\dfrac{b}{c}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{2b}{a}\left(2\right)\)
\(\left(\dfrac{a}{b}+\dfrac{c}{a}\right)^2\ge0\Rightarrow\dfrac{a^2}{b^2}+\dfrac{c^2}{a^2}\ge\dfrac{2c}{b}\left(3\right)\)
Từ (1)(2)(3) cộng vế theo vế ta được:
\(2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\right)\ge2\left(\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\right)\)
\(\Rightarrow\dfrac{a^2}{b^2}+\dfrac{b^2}{c^2}+\dfrac{c^2}{a^2}\ge\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Cách 1: Từ a+b>2 => a > 2 - b
\(\Rightarrow a^2>\left(2-b\right)^2=b^2-4b+4\)
\(\Rightarrow a^2+b^2>2b^2-4b+4=2\left(b^2-2b+1\right)+2=2\left(b-1\right)^2+2\)
Vì \(\left(b-1\right)^2\ge0\) nên \(2\left(b-1\right)^2+2\ge2\)
Suy ra \(a^2+b^2>2\)
Cách 2:
Áp dụng BĐT Bunhia Copxki ta có:
\(\left(a+b\right)^2\le\left(1^2+1^2\right)\left(a^2+b^2\right)\)
\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2>2^2\)
\(\Rightarrow2\left(a^2+b^2\right)>4\)
\(\Rightarrow a^2+b^2>2\)
Vì a + b > 2
\(\Rightarrow\) (a + b)\(^2\) > 2(a + b)
\(\Leftrightarrow\) a\(^2\) + 2ab + b\(^2\) > 2(a + b)
\(\Leftrightarrow\) a\(^2\) + b\(^2\) > 2(a + b) - 2ab (1)
Mà 2(a+b) - 2ab > 2 (2)
Từ (1) và (2), áp dụng tính chất bằng cầu, ta có:
a\(^2\) + b\(^2\)> 2