K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
4 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)

\(\Leftrightarrow a^2+b^2\ge2\).

Dấu \(=\)khi \(a=b=1\).

b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)

\(\Leftrightarrow a^4+b^4\ge2\)

Dấu \(=\)khi \(a=b=1\).

c) Bạn làm tương tự. 

bạn j ơi a^2+b^2 có = 2 đâu

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

5 tháng 6 2020

Theo giả thiết, ta có: \(ab+bc+ca+abc=4\)

\(\Leftrightarrow abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8\)\(=12+\left(ab+bc+ca\right)+4\left(a+b+c\right)\)

\(\Leftrightarrow\left(a+2\right)\left(b+2\right)\left(c+2\right)\)\(=\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)\)

\(\Leftrightarrow\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}=1\)

\(\Rightarrow a+b+c+6=12\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)-6+a+b+c\)

\(=\left(\frac{12}{a+2}+a-2\right)+\left(\frac{12}{b+2}+b-2\right)+\left(\frac{12}{c+2}+c-2\right)\)

Mặt khác: \(\frac{12}{a+2}+a-2=\frac{12+a^2-4}{a+2}=\frac{a^2+8}{a+2}\)

Tương tự: \(\frac{12}{b+2}+b-2=\frac{b^2+8}{b+2}\)\(\frac{12}{c+2}+c-2=\frac{c^2+8}{c+2}\)

Từ đó suy ra \(a+b+c+6=\frac{a^2+8}{a+2}+\frac{b^2+8}{b+2}+\frac{c^2+8}{c+2}\)

\(\ge\frac{\left(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\right)^2}{a+b+c+6}\)(Theo BĐT Bunyakovsky dạng phân thức)

\(\Rightarrow\left(a+b+c+6\right)^2\ge\left(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\right)^2\)

hay \(\sqrt{a^2+8}+\sqrt{b^2+8}+\sqrt{c^2+8}\le a+b+c+6\)

Đẳng thức xảy ra khi a = b = c = 1

20 tháng 10 2019

a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)  

\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)

\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)

dau = xay ra <=> a=b=1/2

chuc ban hoc tot

mik phai di ngu nen lam hoi tat mong bn thong cam

phan b bn lam tuong tu nha

21 tháng 10 2019

1/ Ta có:

\(\left(a-b\right)^2\ge0,\) mọi a, b

<=> \(a^2-2ab+b^2\ge0\)

<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)

<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

Dấu bằng xảy ra <=>  a - b = 0 <=> a  = b.

2/ Dựa vào câu 1. 

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).

7 tháng 7 2018

a) Ta có: \(x^2-20x+101=x^2-2.x.10+10^2+1=\left(x-10\right)^2+1\)

Vì \(\left(x-10\right)^2\ge0\left(\forall x\in Z\right)\)

\(\Rightarrow\left(x-10\right)^2+1>1>0\)

Vậy x2-20x+101 >0 với mọi x

b) \(4a^2+4a+2=\left(2a\right)^2+2.2a.1+1+1=\left(2a+1\right)^2+1\)

Vì \(\left(2a+1\right)^2\ge0\left(\forall a\in Z\right)\)

\(\Rightarrow\left(2a+1\right)^2+1>1>0\)

Vậy 4a2+4a+2 > 0 với mọi a

c) \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16\)

\(=\left(x+2\right)\left(x+8\right)\left(x+4\right)\left(x+6\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16\)

\(=\left(x^2+10x+16\right)\left(x^2+10x+16+8\right)+16\)

\(=\left(x^2+10x+16\right)^2+8\left(x^2+10x+16\right)+16\)

\(=\left(x^2+10x+20\right)^2\) \(\ge0\left(\forall x\right)\)

7 tháng 7 2018

Giúp mình với !!