Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{a^2}{b}-a+b+b=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)
\(=\sqrt{a^2-ab+b^2}+\sqrt{a^2-ab+b^2}=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\)
\(\ge\sqrt{a^2-ab+b^2}+\sqrt{\frac{1}{4}\left(a+b\right)^2}=\sqrt{a^2-ab+b^2}+\frac{a+b}{2}\)
chứng minh tương tự ta được
\(\frac{b^2}{c}-b+c+c\ge\sqrt{b^2-bc+c^2}+\frac{b+c}{2},\frac{c^2}{a}-c+a+a\ge\sqrt{c^2-ca+a^2}+\frac{a+c}{2}\)
cộng vế với vế ta được
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}+a+b+c\)
Dấu bằng xảy ra khi a=b=c
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\Rightarrow a+b\ge2\sqrt{ab}\)
\(\Rightarrow a+b-2\sqrt{ab}\ge0\)
\(\Rightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng)
Dấu "=" xảy ra khi: \(a=b\)
\(\dfrac{P}{\sqrt{2}}=\dfrac{a}{\sqrt{2b\left(a+b\right)}}+\dfrac{b}{\sqrt{2c\left(b+c\right)}}+\dfrac{c}{\sqrt{2a\left(a+c\right)}}\)
\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2a}{2b+a+b}+\dfrac{2b}{2c+b+c}+\dfrac{2c}{2a+a+c}\)
\(\dfrac{P}{\sqrt{2}}\ge2\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)=2\left(\dfrac{a^2}{a^2+3ab}+\dfrac{b^2}{b^2+3bc}+\dfrac{c^2}{c^2+3ca}\right)\)
\(\dfrac{P}{\sqrt{2}}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+ab+bc+ca}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{3}{2}\)
\(\Rightarrow P\ge\dfrac{3\sqrt{2}}{2}\) (đpcm)
\(\dfrac{a}{\sqrt{ab+b^2}}=\dfrac{\sqrt{2}.a}{\sqrt{2b\left(a+b\right)}}\ge\dfrac{\sqrt{2}.a}{\dfrac{2b+a+b}{2}}=\dfrac{2\sqrt{2}a}{a+3b}\)
làm tương tự với \(\dfrac{b}{\sqrt{bc+c^2}};\dfrac{c}{\sqrt{ca+a^2}}\)
\(=>P\ge2\sqrt{2}\left(\dfrac{a}{a+3b}+\dfrac{b}{b+3c}+\dfrac{c}{c+3a}\right)\)
\(=2\sqrt{2}\left(\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3\left(ab+bc+ca\right)}\right)\)
\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+\dfrac{4}{3}\left(ab+bc+ca\right)+\dfrac{8}{3}\left(ab+bc+ca\right)}\right]\)
\(=2\sqrt{2}\left[\dfrac{\left(a+b+c\right)^2}{\dfrac{4}{3}\left(a+b+c\right)^2}\right]=\dfrac{2\sqrt{2}.3}{4}=\dfrac{3\sqrt{2}}{2}\)
dấu"=" xảy ra<=>a=b=c
Ta có \(c\ge\sqrt{ab}\Leftrightarrow c^2\ge ab\Leftrightarrow c^2-ab\ge0\Leftrightarrow c\left(c^2-ab\right)\ge0\Leftrightarrow c^3-abc\ge0\Leftrightarrow\left(c^3-abc\right)\left(a-b\right)\ge0\Leftrightarrow ac^3-a^2bc-bc^3+ab^2c\ge0\Leftrightarrow ab^2c+ac^3\ge a^2bc+bc^3\Leftrightarrow ac\left(b^2+c^2\right)\ge bc\left(a^2+c^2\right)\Leftrightarrow\dfrac{ac}{a^2+c^2}\ge\dfrac{bc}{b^2+c^2}\Leftrightarrow\dfrac{2ac}{a^2+c^2}\ge\dfrac{2bc}{b^2+c^2}\Leftrightarrow1+\dfrac{2ac}{a^2+c^2}\ge1+\dfrac{2bc}{b^2+c^2}\Leftrightarrow\dfrac{a^2+2ac+c^2}{a^2+c^2}\ge\dfrac{b^2+2bc+c^2}{b^2+c^2}\Leftrightarrow\dfrac{\left(a+c\right)^2}{a^2+c^2}\ge\dfrac{\left(b+c\right)^2}{b^2+c^2}\Leftrightarrow\dfrac{a+c}{\sqrt{a^2+c^2}}\ge\dfrac{b+c}{\sqrt{b^2+c^2}}\left(đpcm\right)\)
Cần chứng minh
(a + c)²(b² + c²) ≥ (b + c)²(a² + c²)
<=> 2c(a - b)(c² - ab) ≥ 0
Cái này đúng.
1) \(\left(a-b\right)^2\ge0\)
\(a^2-2ab+b^2\ge0\)
\(a^2+b^2+2ab\ge4ab\)
\(\left(a+b\right)^2\ge4ab\)
\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)
\(\dfrac{a+b}{2}\ge\sqrt{ab}\)
Dấu ''='' xảy ra khi a=b
2) \(\left(\sqrt{2a}-\sqrt{2b}\right)^2\ge0\)
\(2a-4\sqrt{ab}+2b\ge0\)
\(4a+4b\ge2a+2b+4\sqrt{ab}\)
\(\dfrac{a+b}{2}\ge\dfrac{a+b+2\sqrt{ab}}{4}\)
\(\sqrt{\dfrac{a+b}{2}}\ge\dfrac{\sqrt{a}+\sqrt{b}}{2}\)
Dấu ''='' xảy ra khi a=b
\(\text{Ta có }:\left(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2\\ =x^2+y^2+2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}+z^2+t^2\)
Áp dụng định lí bu-nhi-a-cốp-xki:
\(\Rightarrow2\sqrt{\left(x^2+y^2\right)\left(z^2+t^2\right)}\ge2\sqrt{\left(xz+yt\right)^2}=2xz+2yt\\ \Rightarrow\left(\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\right)^2\\ \ge x^2+y^2+2xz+2yt+z^2+t^2\\ =x^2+2xz+z^2+y^2+2yt+t^2\\ =\left(x+z\right)^2+\left(y+t\right)^2\\ \Rightarrow\sqrt{x^2+y^2}+\sqrt{z^2+t^2}\ge\sqrt{\left(x+z\right)^2+\left(y+t\right)^2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{x}{y}=\frac{z}{t}\)
Áp dụng BDT trên
\(\Rightarrow\sqrt{a^2+b^2-\sqrt{3}ab}+\sqrt{b^2+c^2-bc}\\ =\sqrt{\frac{3}{4}a^2-\sqrt{3}ab+b^2+\frac{1}{4}a^2}+\sqrt{b^2-bc+\frac{1}{4}c^2+\frac{3}{4}c^2}\\ =\sqrt{\left(\frac{\sqrt{3}}{2}a-b\right)^2+\frac{1}{4}a^2}+\sqrt{\left(b-\frac{1}{2}c\right)^2+\frac{3}{4}c^2}\\ \ge\sqrt{\left(\frac{\sqrt{3}}{2}a-b+b-\frac{1}{2}c\right)^2+\left(\frac{1}{2}a+\frac{\sqrt{3}}{2}c\right)^2}\\ =\sqrt{\left(\frac{\sqrt{3}}{2}a-\frac{1}{2}c\right)^2+\left(\frac{1}{2}a+\frac{\sqrt{3}}{2}c\right)^2}\\ =\sqrt{\frac{3}{4}a^2-\frac{\sqrt{3}}{2}ac+\frac{1}{4}c^2+\frac{1}{4}a^2+\frac{\sqrt{3}}{2}ac+\frac{3}{4}c^2}\\ \\ =\sqrt{a^2+c^2}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{\frac{\sqrt{3}}{2}a-b}{\frac{1}{2}a}=\frac{b-\frac{1}{2}c}{\frac{\sqrt{3}}{2}c}\)
\(\Leftrightarrow\frac{\sqrt{3}a-2b}{a}=\frac{2b-c}{\sqrt{3}c}\\ \Leftrightarrow\sqrt{3}c\left(\sqrt{3}a-2b\right)=a\left(2b-c\right)\\ \Leftrightarrow3ac-2\sqrt{3}bc=2ab-ac\\ \Leftrightarrow4ac-2\sqrt{3}bc-2ab=0\)
Ta có \(\sqrt{a-1}+\dfrac{1}{\sqrt{a-1}}\) \(=\sqrt{a-1}+\dfrac{1}{4\sqrt{a-1}}+\dfrac{3}{4\sqrt{a-1}}\) \(\ge2\sqrt{\sqrt{a-1}.\dfrac{1}{4\sqrt{a-1}}}+\dfrac{3}{4\sqrt{a-1}}\) \(=1+\dfrac{3}{4\sqrt{a-1}}\).
Lập 2 BĐT tương tự rồi cộng vế theo vế, ta có
\(VT\ge3+\dfrac{3}{4}\left(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\right)\)
\(\ge3+\dfrac{3}{4}.\dfrac{9}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\)
\(\ge3+\dfrac{3}{4}.\dfrac{9}{\dfrac{3}{2}}\) \(=\dfrac{15}{2}\).
ĐTXR \(\Leftrightarrow a=b=c=\dfrac{5}{4}\). Ta có đpcm
Có \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}+\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{15}{2}-\left(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}\right)\ge6\) (1)
Ta chứng minh (1) đúng
Áp dụng bất đẳng thức Schwarz :
\(\dfrac{1}{\sqrt{a-1}}+\dfrac{1}{\sqrt{b-1}}+\dfrac{1}{\sqrt{c-1}}\ge\dfrac{\left(1+1+1\right)^2}{\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}}\ge\dfrac{9}{\dfrac{3}{2}}=6\)Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}\sqrt{a-1}=\sqrt{b-1}=\sqrt{c-1}\\\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}=\dfrac{3}{2}\end{matrix}\right.\)
\(\Leftrightarrow a=b=c=\dfrac{5}{4}\)(tm)
Ta có : \(\frac{a+b}{2}\ge\sqrt{ab}\) (1)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)
\(\Leftrightarrow a^2-2ab+b^2\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)(2)
Bất đẳng thức 2 luôn đúng với \(\forall x\),vậy nên bất đẳng thức 1 cũng luôn đúng với mọi x .
Dấu "=" xảy ra khi và chỉ khi \(\left(a-b\right)^2=0\)
=> a-b=0 => a=b
Vậy BDT \(\frac{a+b}{2}\ge\sqrt{ab}\) xảy ra khi a = b
áp dụng ta có :
\(\frac{a+b}{2}\ge\sqrt{ab}\left(1\right)\)
\(\frac{b+c}{2}\ge\sqrt{bc}\left(2\right)\)
\(\frac{a+c}{2}\ge\sqrt{ca}\) (3)
từ 1,2,3 cộng từng ba bất đẳng thức ta được : \(\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{a+b+c}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)
Mở rộng kết quả cho 4 số a,b,c,d không âm ta có bất đẳng thức :
\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)
Mở rộng kết quả cho 5 số a,b,c,d,e không âm ta có bất đẳng thức :
\(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\)
\(\Leftrightarrow a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\)(luôn đúng \(\forall a,b\ge0\))
Ta có: \(\frac{a+b}{2}\ge\sqrt{ab}\forall a,b\ge0\)
\(\frac{b+c}{2}\ge\sqrt{bc}\forall b,c\ge0\)
\(\frac{c+a}{2}\ge\sqrt{ac}\forall a,c\ge0\)
Do đó: \(\frac{a+b+b+c+c+a}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow\frac{2\left(a+b+c\right)}{2}\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)
\(\Leftrightarrow a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\forall a,b,c\ge0\)(đpcm)
a)\(\dfrac{\left(a+b\right)^2}{4}\ge ab\)\(\Leftrightarrow\dfrac{a^2+ab+b^2}{4}\ge0\)\(\Leftrightarrow\dfrac{\left(a+\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}}{4}\ge0\left(đpcm\right)\)
Vậy \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
b) Áp dụng Cauchy, ta có:
\(\dfrac{bc}{a}+\dfrac{ca}{b}\ge2\sqrt{\dfrac{bc}{a}.\dfrac{ca}{b}}=2c\)
Tương tự: \(\dfrac{ca}{b}+\dfrac{ab}{c}\ge2a\)
\(\dfrac{ab}{c}+\dfrac{bc}{a}\ge2b\)
Cộng vế theo vế các BĐT vừa chứng minh rồi rút gọn ta được đpcm.
\(bdt\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (đúng) . Dấu "=" khi a=b
Xét \(a+b\ge2\sqrt{ab}\)
\(\Leftrightarrow a+b-2\sqrt{ab}\ge0\)
\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng với mọi a, b)
\(\Leftrightarrow\) đpcm