\(\sqrt{b+1}\) +b
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)

\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)

7 tháng 4 2017

em cảm ơn haha

16 tháng 8 2016

Giả thiết là \(a,b\ge0\)thì chuẩn hơn.

\(\left(a+b\right)^2=a^2+b^2+2ab=1+2ab\ge1\text{ }\Rightarrow\text{ }a+b\ge1\)

Dấu bằng xảy ra khi \(2ab=0\Leftrightarrow\orbr{\begin{cases}a=0\\b=0\end{cases}}\)

Ta có: \(\left(a-b\right)^2\ge0\Rightarrow\text{ }\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Rightarrow\left(a+b\right)^2\le2\Rightarrow a+b\le\sqrt{2}\)

Dấu bằng xảy ra khi \(a-b=0\Leftrightarrow a=b\)

\(P=\sqrt{1+2a}+\sqrt{1+2b}\)

Max: Áp dụng bđt đã sử dụng ở trên: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\)

\(P^2\le2\left(1+2a+1+2b\right)=4\left(a+b\right)+4\le4\sqrt{2}+4\)

\(\Rightarrow P\le\sqrt{4+4\sqrt{2}}=2\sqrt{1+\sqrt{2}}\)

Dấu bằng xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Min: Dùng bđt \(\sqrt{1+x}+\sqrt{1+y}\ge1+\sqrt{1+x+y}\text{ (1)}\left(x;\text{ }y\ge0\right)\)

\(\left(1\right)\Leftrightarrow1+x+1+y+2\sqrt{1+x}\sqrt{1+y}\ge1+1+x+y+2\sqrt{x+y+1}\)

\(\Leftrightarrow\sqrt{1+x}\sqrt{1+y}\ge\sqrt{1+x+y}\)

\(\Leftrightarrow xy+x+y+1\ge x+y+1\)

\(\Leftrightarrow xy\ge0\)

Do bđt cuối dúng với mọi \(x,y\ge0\) nên (1) đúng.

Dấu bằng xảy ra khi \(xy=0\Leftrightarrow\orbr{\begin{cases}x=0\\y=0\end{cases}}\)

\(P\ge1+\sqrt{1+2\left(a+b\right)}\ge1+\sqrt{1+2}=1+\sqrt{3}\)

Dấu bằng xảy ra khi \(\orbr{\begin{cases}a=0;\text{ }b=1\\a=1;\text{ }b=0\end{cases}}\)

5 tháng 5 2017

\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)

\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)

Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)

30 tháng 10 2016

Ta có :(a+b-c)2 \(\ge\) 0

<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)

<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)

<=>bc+ac-ab \(\le\frac{5}{6}< 1\)

<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)

<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)

3 tháng 6 2019

\(a,\)\(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Rightarrow2a^2+2b^2\ge a^2+2ab+b^2\)

\(\Rightarrow a^2+b^2\ge2ab\)

\(\Rightarrow a^2-2ab+b^2\ge0\)

\(\Rightarrow\left(a-b\right)^2\ge0\) ( luôn đúng )

\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

8 tháng 10 2019

Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(

\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)

\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)

\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)

\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)

Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)

P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.