Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)
\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)
Áp dụng BĐT cô -si \(\left(ab\le\frac{\left(a+b\right)^2}{4}\right)\) ta có :
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+b+2\sqrt{ab}\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{8}\)
<=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
<=> \(ab\left(a+b\right)^2\le\frac{1}{64}\)
Dấu '' = '' xảy ra khi a = b = \(\frac{1}{4}\)
BPT <=> \(\sqrt{ab}\left(a+b\right)\le\frac{1}{8}\)
\(\frac{1}{2}\cdot2\sqrt{ab}\left(a+b\right)\le\frac{1}{2}\cdot\frac{\left(a+2\sqrt{ab}+b\right)^2}{4}=\frac{1}{2}\cdot\frac{\left(\sqrt{a}+\sqrt{b}\right)^4}{4}=\frac{1}{2}\cdot\frac{1}{4}=\frac{1}{8}\)
Áp dụng bđt bunhiacopski cho 3 số ta có
\(\left(a\sqrt{1-b^2}+b\sqrt{1-c^2}+c\sqrt{1-a^2}\right)^2\le\left(a^2+b^2+c^2\right)\left(1-a^2+1-b^2+1-c^2\right)\Leftrightarrow\frac{9}{4}\le\left(a^2+b^2+c^2\right)\left[3-\left(a^2+b^2+c^2\right)\right]\)(1)
Đặt \(a^2+b^2+c^2=k\)
Vậy (1)\(\Leftrightarrow\frac{9}{4}\le k\left(3-k\right)\Leftrightarrow\frac{9}{4}\le3k-k^2\Leftrightarrow k^2-3k+\frac{9}{4}\le0\Leftrightarrow\left(k-\frac{3}{2}\right)^2\le0\)
Vì \(\left(k-\frac{3}{2}\right)^2\ge0\)
Suy ra \(\left(k-\frac{3}{2}\right)^2=0\Leftrightarrow k-\frac{3}{2}=0\Leftrightarrow k=\frac{3}{2}\)
Vậy \(a^2+b^2+c^2=\frac{3}{2}\)
Bài này đưa về giải hệ phương trình
\(\left\{{}\begin{matrix}a-b+4ab=1\\a^2+b^2=2\end{matrix}\right.\) với \(a,b\ge0\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-b+4ab=1\left(1\right)\\\left(a-b\right)^2+2ab=2\left(2\right)\end{matrix}\right.\)
Từ pt (1) suy ra \(a-b=1-4ab\Rightarrow\left(a-b\right)^2=1+16a^2b^2-8ab\)
Do đó
\(\left(2\right)\Rightarrow1+16a^2b^2-8ab+2ab=2\)
\(\Leftrightarrow16a^2b^2-6ab-1=0\)
Xem đây là pt bậc 2 với ab tìm được \(\left[{}\begin{matrix}ab=\dfrac{1}{2}\\ab=-\dfrac{1}{8}\end{matrix}\right.\)
- TH1: \(ab=\dfrac{1}{2}\Rightarrow a-b=-1\)
Có \(\left\{{}\begin{matrix}a-b=-1\\ab=\dfrac{1}{2}\end{matrix}\right.\) tìm được \(\left\{{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\b=\dfrac{1+\sqrt{3}}{2}\end{matrix}\right.\) (thỏa mãn a,b>0)
Từ đó tìm x
Tương tự cho TH còn lại
\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)
\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)