Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\sqrt{1+a}+b\sqrt{1+b}\le\sqrt{\left(a^2+b^2\right)\left(1+a+1+b\right)}\)
\(=\sqrt{2+a+b}\le\sqrt{2+\sqrt{2\left(a^2+b^2\right)}}=\sqrt{2+\sqrt{2}}\)
Dấu = xảy ra khi \(a=b=\dfrac{1}{\sqrt{2}}\)
Từ giả thiết ta suy ra \(a+\sqrt{1-a^2}=b+\sqrt{1-b^2}\to\left(a+\sqrt{1-a^2}\right)^2=\left(b+\sqrt{1-b^2}\right)^2\)
\(\to a^2+2a\sqrt{1-a^2}+\left(1-a^2\right)=b^2+2b\sqrt{1-b^2}+\left(1-b^2\right)\)
\(\to a\sqrt{1-a^2}=b\sqrt{1-b^2}\to a^2\left(1-a^2\right)=b^2\left(1-b^2\right)\to a^2-a^4=b^2-b^4\)
\(\to\left(a^4-b^4\right)=a^2-b^2\to\left(a^2-b^2\right)\left(a^2+b^2-1\right)=0.\)
Vì a,b dương khác nhau nên \(a^2-b^2\ne0\to a^2+b^2=1.\) (ĐPCM)
Làm chữa lỗi phát:v Đến giờ mới nghĩ ra(thực ra là tình cờ xem lại ngày xưa:(
\(VT=\Sigma\frac{\sqrt{\left(a^2+b^2\right)2ab}}{a^2+b^2}\ge\Sigma\frac{2ab}{a^2+b^2}+3-3\)
\(=\Sigma\frac{\left(a+b\right)^2}{a^2+b^2}-3\ge\frac{\left[2\left(a+b+c\right)\right]^2}{2\left(a^2+b^2+c^2\right)}-3\)
\(=\frac{2\left(a+b+c\right)^2}{\left(a^2+b^2+c^2\right)}-3=\frac{2\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2}-3\)
\(=\frac{4\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}-3=1\)(qed)
Đẳng thức xảy ra khi a = b = 1; c = 0 và các hoán vị (xét sơ sơ thôi chớ xét chi tiết em không biết làm đâu:v)
P.s: Chả biết có đúng hay không nữa:(( Lần này mà không đúng thì khổ.
\(\left(a\sqrt{b+1}+b\sqrt{a+1}\right)^2\le\left(a^2+b^2\right)\left(a+b+2\right)=a+b+2\le\sqrt{2\left(a^2+b^2\right)}+2=2+\sqrt{2}\)
\(\Rightarrow a\sqrt{b+1}+b\sqrt{a+1}\le\sqrt{2+\sqrt{2}}\)
Ta có :(a+b-c)2 \(\ge\) 0
<=>a2+b2+c2 \(\ge\) 2(bc-ab+ac)
<=>\(\frac{5}{3}\ge\) 2(bc-ab+ac)
<=>bc+ac-ab \(\le\frac{5}{6}< 1\)
<=>\(\frac{bc+ac-ab}{abc}< \frac{1}{abc}\) (vì a,b,c>0 nên chia cả 2 vế cho abc)
<=>\(\frac{1}{a}+\frac{1}{b}-\frac{1}{c}< 1\) (đpcm)