Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\left(a,b,c>0\right)\).
Ta có:
\(\frac{a^2}{c\left(a^2+c^2\right)}=\frac{\left(a^2+c^2\right)-c^2}{c\left(a^2+c^2\right)}=\frac{a^2+c^2}{c\left(a^2+c^2\right)}-\frac{c^2}{c\left(a^2+c^2\right)}\)\(=\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\).
Vì \(a,c>0\)nên áp dụng bất đẳng thức Cô-si cho 2 số dương, ta được:
\(a^2+c^2\ge2ac\).
\(\Leftrightarrow c\left(a^2+c^2\right)\ge2ac^2\).
\(\Rightarrow\frac{1}{c\left(a^2+c^2\right)}\le\frac{1}{2ac^2}\)
\(\Leftrightarrow\frac{c^2}{c\left(a^2+c^2\right)}\le\frac{c^2}{2ac^2}=\frac{1}{2a}\).
\(\Leftrightarrow-\frac{c^2}{c\left(a^2+c^2\right)}\ge-\frac{1}{2a}\).
\(\Leftrightarrow\frac{1}{c}-\frac{c^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\)
\(\Leftrightarrow\frac{a^2}{c\left(a^2+c^2\right)}\ge\frac{1}{c}-\frac{1}{2a}\left(1\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=c>0\) .
Chứng minh tương tự, ta được:
\(\frac{b^2}{a\left(a^2+b^2\right)}\ge\frac{1}{a}-\frac{1}{2b}\left(a,b>0\right)\left(2\right)\)
Dấu bằng xảy ra \(\Leftrightarrow a=b>0\)
Chứng minh tương tự, ta dược:
\(\frac{c^2}{b\left(b^2+c^2\right)}\ge\frac{1}{b}-\frac{1}{2c}\left(b,c>0\right)\left(3\right)\).
Dấu bằng xảy ra \(\Leftrightarrow b=c>0\).
Từ \(\left(1\right),\left(2\right),\left(3\right)\), ta được:
\(\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\ge\)\(\frac{1}{c}-\frac{1}{2a}+\frac{1}{a}-\frac{1}{2b}+\frac{1}{b}-\frac{1}{2c}\).
\(\Leftrightarrow K\ge\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)-\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\).
\(\Leftrightarrow K\ge\frac{1}{2}\left(\frac{ab+bc+ca}{abc}\right)\).
Mà \(ab+bc+ca=3abc\)(theo đề bài).
Do đó \(K\ge\frac{1}{2}.\frac{3abc}{abc}\).
\(\Leftrightarrow K\ge\frac{3abc}{2abc}\).
\(\Leftrightarrow K\ge\frac{3}{2}\).
Dấu bằng xảy ra.
\(\Leftrightarrow\hept{\begin{cases}a=b=c>0\\ab+bc+ca=3abc\end{cases}}\Leftrightarrow a=b=c=1\).
Vậy \(minK=\frac{3}{2}\Leftrightarrow a=b=c=1\).
\(Q=\left(1+\frac{\alpha}{x}\right)\left(1+\frac{\alpha}{y}\right)\left(1+\frac{\alpha}{z}\right)=\left(\frac{\alpha+x}{x}\right)\left(\frac{\alpha+y}{y}\right)\left(\frac{\alpha+z}{z}\right)\)
Mà \(\alpha=x+y+z\) (theo gt) nên ta có thể viết \(Q\) như sau:
\(Q=\left(\frac{2x+y+z}{x}\right)\left(\frac{x+2y+z}{y}\right)\left(\frac{x+y+2z}{z}\right)=\left(2+\frac{y+z}{x}\right)\left(2+\frac{x+z}{y}\right)\left(2+\frac{x+y}{z}\right)\)
Đặt \(a=\frac{y+z}{x};\) \(b=\frac{x+z}{y};\) và \(c=\frac{x+y}{z}\) \(\Rightarrow\) \(a,b,c>0\)
Khi đó, biểu thức \(Q\) được biểu diễn theo ba biến \(a,b,c\) như sau:
\(Q=\left(2+a\right)\left(2+b\right)\left(2+c\right)=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc+8\)
\(\Rightarrow\) \(Q-8=4\left(a+b+c\right)+2\left(ab+bc+ca\right)+abc\)
Mặt khác, ta lại có:
\(a+b+c=\frac{y+z}{x}+\frac{x+z}{y}+\frac{x+y}{z}\)
nên \(a+b+c+3=\frac{y+z}{x}+1+\frac{x+z}{y}+1+\frac{x+y}{z}+1\)
\(\Rightarrow\) \(a+b+c+3=\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Lại có: \(\hept{\begin{cases}x+y+z\ge3\sqrt[3]{xyz}\text{ (1)}\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge3\sqrt[3]{\frac{1}{xyz}}\text{ (2)}\end{cases}}\) (theo bđt \(Cauchy\) lần lượt cho hai bộ số gồm các số không âm)
Nhân hai bđt \(\left(1\right);\) và \(\left(2\right)\) vế theo vế, ta được bđt mới là:
\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)
Theo đó, \(a+b+c+3\ge9\) tức là \(a+b+c\ge6\)
\(\Rightarrow\) \(4\left(a+b+c\right)\ge24\) \(\left(\alpha\right)\)
Bên cạnh đó, ta cũng sẽ chứng minh \(abc\ge8\) \(\left(\beta\right)\)
Thật vậy, ta đưa vế trái bđt cần chứng minh thành một biểu thức mới.
\(VT\left(\beta\right)=abc=\frac{\left(x+y\right)\left(y+z\right)\left(x+z\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}}{xyz}=\frac{8xyz}{xyz}=8=VP\left(\beta\right)\)
Vậy, bđt \(\left(\beta\right)\) được chứng minh.
Từ đó, ta có thể rút ra được một bđt mới.
\(ab+bc+ca\ge3\sqrt[3]{\left(abc\right)^2}\ge3\sqrt[3]{8^2}=12\) (theo cách dẫn trên)
\(\Rightarrow\) \(2\left(ab+bc+ca\right)\ge24\) \(\left(\gamma\right)\)
Cộng từng vế 3 bđt \(\left(\alpha\right);\) \(\left(\beta\right)\) và \(\left(\gamma\right)\), ta được:
\(Q-8\ge24+8+24=56\)
Do đó, \(Q\ge64\)
Dấu \("="\) xảy ra khi và chỉ khi \(a=b=c\) \(\Leftrightarrow\) \(x=y=z=2\)
Vậy, \(Q_{min}=64\) khi \(\alpha=6\)
Lời giải:
Áp dụng BĐT Cauchy:
\(4=a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\Rightarrow ab\leq 2\)
\(P=a^4+b^4+4ab=(a^2+b^2)^2-2a^2b^2+4ab\)
\(=16-2(a^2b^2-2ab)=18-2(a^2b^2-2ab+1)\)
\(=18-2(ab-1)^2\)
Vì \((ab-1)^2\geq 0, \forall ab\leq 2\Rightarrow P=18-2(ab-1)^2\leq 18\)
Vậy \(P_{\max}=18\Leftrightarrow \left\{\begin{matrix} ab=1\\ a^2+b^2=4\end{matrix}\right.\)