K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .Bài 4 : Cho các...
Đọc tiếp

Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :

\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .

Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :

\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)

Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :

\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .

Bài 4 : Cho các số dương a,b,c . Chứng minh :

\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)

Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1

Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)

Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :

\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)

 

6
3 tháng 11 2019

neu de bai bai 1 la tinh x+y thi mik lam cho

4 tháng 11 2019

đăng từng này thì ai làm cho 

11 tháng 1 2015

Bai 1: Ap dung BDT Bunhiacopxki ta co:

         \(ax+by+cz+2\sqrt {(ab+ac+bc)(xy+yz+xz)} \)

         \(≤ \sqrt {(a^2+b^2+c^2)(x^2+y^2+z^2)} + \sqrt {(ab+ac+bc)(xy+yz+zx)}+\sqrt {(ab+ac+bc)(xy+yz+zx)}\)

         \(≤ \sqrt {(a^2+b^2+c^2+2ab+2ac+2bc)(x^2+y^2+z^2+2xy+2yz+2zx)}\)

         \(= (a+b+c)(x+y+z)\) 

   =>  \(Q.E.D\)

11 tháng 1 2015

Tiep bai 4:Ta co:

               BDT <=>  \((2+y^2z)(2+z^2x)(2+x^2y)≥(2+x)(2+y)(2+z)\)

    Sau khi khai trien con:   \(2(z^2x+y^2z+x^2y)+x^2z+z^2y+y^2x≥xy+yz+zx+2x+2y+2z \)

               Ap dung BDT Cosi ta co:

                                       \(z^2x+x ≥ 2zx \) <=> \(z^2x≥2zx-x\)

              Lam tuong tu ta co:  \(2(z^2x+y^2z+x^2y)≥4xy+4yz+4zx-2x-2y-2z \)(1)

                                        \(x^2z+{1\over z}≥2x \) <=> \(x^2z≥2x-xy \) (do xyz=1)

              Lam tuong tu ta co:  \(x^2z+z^2y+y^2x≥ 2y+2z+2x-xy-yz-zx\)(2)

Cong (1) voi (2) ta co:      VT\(≥ 3(xy+yz+zx)\)(*)

               Voi cach lam tuong tu ta cung duoc:  VT\(≥ 3(x+y+z) \)(**)

Tu (*) va (**) suy ra :   \(3 \)VT \(≥ 6(x+y+z)+3(xy+yz+zx) \)

                           <=>   VT \(≥ 2(x+y+z)+xy+yz+zx\)

                            =>   \(Q.E.D\)

22 tháng 9 2016

bn thay 1 = xy+yz+xz vào rồi phân tích thành nhân tử 

rút gọn ra 2

28 tháng 10 2014

xin lỗi em mới lớp 8 ko trả lời dc

26 tháng 10 2019

dễ thấy với điệu kiện đề bài thì xy(\(\sqrt{x}+\sqrt{y}-2.\))\(\ge0\)

 Vì x;y có vai trò ngang nhau nên giả sử x\(\ge y\)

đặt \(x^2=a,y^2=b;\sqrt{x}-1=m;\sqrt{y-1}=n\)=> am+bn= \(x^2\left(\sqrt{x}-1\right)+y^2\left(\sqrt{y}-1\right)\)

thì ta có \(a\ge b;m\ge n\)

=> (a-b)(m-n) \(\ge0< =>am+bn\ge an+bm< =>2am+2bn\ge\left(a+b\right)\left(m+m\right)\)

<=>\(am+bn\ge\frac{\left(a+b\right)\left(m+n\right)}{2}=\frac{\left(x^2+y^2\right)\left(\sqrt{x}-1+\sqrt{y}-1\right)}{2}\ge0\)

hay am+bn\(\ge0\)

vậy vế trái luôn lớn hơn bằng 0

dấu"="  khi \(\sqrt{x}+\sqrt{y}-2=0\)

27 tháng 6 2020

Bài 2 hình như sai đề thì phải