Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1/ \(4\left(a^2-ab+b^2\right)⋮3\)
\(\Rightarrow\left(2a-b\right)^2+3b^2⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮3\)
\(\Rightarrow2a-b⋮3\)
\(\Rightarrow\left(2a-b\right)^2⋮9\)
\(\Rightarrow3b^2⋮9\)
\(\Rightarrow b⋮3\)
\(\Rightarrow a⋮3\)
Giả sử \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.
Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)
TH1: Nếu trong a và b có một số chẵn, một số lẻ:
Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)
\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)
Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)
\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.
Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.
Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.
TH2: Nếu cả a và b đều lẻ
\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.
Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1)
Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)
Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.
Vậy k luôn bằng 5 và nó là số nguyên tố.
bài 1b
+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)
mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số
+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)
Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)
\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)
\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)
\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)
là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2
(nhớ k nhé)
Bài 2a)
Nhân 2 vế với 2 ta có
\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)
\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)
\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)
Dẫu = xảy ra khi \(a=b\)
Lời giải:
Ta có:
\(a^2-ab+b^2\vdots 9\vdots 3\)
\(\Leftrightarrow a^2+2ab+b^2-3ab\vdots 3\)
\(\Leftrightarrow (a+b)^2-3ab\vdots 3\Rightarrow (a+b)^2\vdots 3\Rightarrow a+b\vdots 3\) (do $3$ là số nguyên tố)
\(\Rightarrow (a+b)^2\vdots 9\)
Mà \(a^2-ab+b^2=(a+b)^2-3ab\vdots 9\) (giả thiết)
Suy ra \(3ab\vdots 9\Rightarrow ab\vdots 3\). Do đó tồn tại ít nhất một trong 2 số $a$ hoặc $b$ chia hết cho $3$. Không mất tổng quát, giả sử $a$ chia hết cho $3$
Khi đó \(a(a-b)\vdots 3\), mà \(a^2-ab+b^2=a(a-b)+b^2\vdots 3\)
\(\Rightarrow b^2\vdots 3\Rightarrow b\vdots 3\)
Vậy $a,b$ đều chia hết cho $3$
BN THAM KHẢO: