K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 11 2017

Giả sử   \(\frac{a^2+b^2}{ab-1}=k\left(k\in Z\right)\). Ta sẽ đi tìm k và chứng minh k là số nguyên tố.

Đặt \(m=a+b;n=a-b\), ta có \(\frac{a^2+b^2}{ab-1}=k\Rightarrow\frac{m^2+n^2}{m^2-n^2-4}=\frac{k}{2}\)

TH1: Nếu trong a và b có một số chẵn, một số lẻ:

Khi đó k là số lẻ. Đặt \(d=\left(m^2+n^2;m^2-n^2-4\right)\Rightarrow d=\left(2m^2-4,2n^2+4\right)\)

\(\Leftrightarrow\) d | 2(m2 + n2) = 4(a2 + b2)

Mà \(\hept{\begin{cases}m^2+n^2=kd\\m^2-n^2-4=2d\end{cases}}\)

\(\Leftrightarrow2x^2-4=d\left(k+2\right)\Rightarrow\) d chia hết 2.

Lại có a2 + b2 là số lẻ nên d = 2 hoặc d = 4.

Thay vào hệ bên trên và giả thiết thì (a,b) = (-2;-1) hoặc (2;1). Khi đó k = 5 và nó là số nguyên tố.

TH2: Nếu cả a và b đều lẻ

\(\Rightarrow a=2k+1;b=2h+1\Rightarrow k=\frac{2\left(k^2+h^2+k+h\right)+1}{2kh+k+h}\) là số lẻ.

Tương tự như bên trên ta có d | 4(a2 + b2) = 8(2k2 + 2h2 + 2k + 2h + 1) 

Và 2m2 - 4 = (k+2)d \(\Rightarrow d⋮2\Rightarrow d\in\left\{2;4;8\right\}\)

Thế vào hệ ta cũng tìm được (a;b) = (3;1) hoặc (-3;-10 và k = 5.

Vậy k luôn bằng 5 và nó là số nguyên tố.

6 tháng 10 2017

bài 1b

+)Nếu n chẵn ,ta có \(n^4⋮2,4^n⋮2\Rightarrow n^4+4^n⋮2\)

mà \(n^4+4^n>2\)Do đó \(n^4+4^n\)là hợp số

+)nếu n lẻ đặt \(n=2k+1\left(k\in N\right)\)

Ta có \(n^4+4^n=n^4+4^{2k}.4=\left(n^2+2.4k\right)^2-2n^2.2.4^k\)

\(=\left(n^2+2^{2k+1}\right)^2-\left(2.n.2^k\right)^2\)

\(=\left(n^2+2^{2k+1}+2n.2^k\right)\left(n^2+2^{2k+1}-2n.2^k\right)\)

\(=\left(\left(n+2^k\right)^2+2^{2k}\right)\left(\left(n-2^k\right)^2+2^{2k}\right)\)

là hợp số,vì mỗi thừa số đều lớn hơn hoặc bằng 2

(nhớ k nhé)

6 tháng 10 2017

Bài 2a)

Nhân 2 vế với 2 ta có

\(a^4+b^4\ge2ab\left(a^2+b^2\right)-2a^2b^2\)

\(\Leftrightarrow\left(a^2+b^2\right)^2\ge2ab\left(a^2+b^2\right)\)

\(\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow\left(a-b\right)^2\ge0\)(đúng)

Dẫu = xảy ra khi \(a=b\)

7 tháng 10 2017

ta có: \(\frac{a}{1+a}+\frac{2b}{1+b}=1\)

<=>a(1+b)+(1+a)2b=(1+a)(1+b)

<=> a+ab+2b+2ab=1+a+b+ab

<=>b+2ab=1  => (b+2ab)^2  =1  <=>\(b^2+4ab^2+4a^2b^2=1\)      

mặt khác ta có: \(ab^2\le\frac{1}{8}\)   (*)

=> \(ab^2\le\frac{b^2+4ab^2+4a^2b^2}{8}\)

                                                <=>\(8ab^2\le b^2+4ab^2+4a^2b^2\) 

                                               <=>\(b^2-4ab^2+4a^2b^2\ge0\)

                                              <=> \(\left(b-2ab\right)^2\ge0\) (luôn đúng)

                                             =>(*) luôn đúng => đpcm

8 tháng 10 2017

Vận dụng những bài đã biết :V 

đặt b=c ,ta có: 

\(\frac{a}{a+1}+\frac{2b}{2b+1}=\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=1\).Cần tìm min của abc. :V quen chưa :V

5 tháng 11 2018

SAI ĐỀ vì nếu thử \(a=-1;b=-2;c=3\)

thì thỏa mãn đề bài nhưng \(a^2+b^2+c^2=\left(-1\right)^2+\left(-2\right)^2+3^2=14⋮̸3\)

7 tháng 11 2018

mũ 3 nha mọi người. giúp tớ với ạ

1 tháng 2 2018

a) 4x2+4x-y2=-1

=>y2=4x2+4x+1

4x2+4x-y2=-1

=>4x2+4x-y2=-1

        x              x

<=> 4x+4-y2/x=-1/x

thay y2

=>4x+4-(4x2+4x+1)/x=-1/x

4x+4-4x+4+1/x=-1/x

8+1/x=-1/x

(8x+1)/x=-1/x

=>8x+1=-1<=>x=-1/4 từ đó thay x tìm y

mình mới lớp 7 nên chưa chắc làm đung đâu nhé!


 

3 tháng 6 2020

Với \(a^2+b^2+c^2=1\), ta có: \(\Sigma\sqrt{\frac{ab+2c^2}{1+ab-c^2}}=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+c^2+ab-c^2}}\)

\(=\Sigma\sqrt{\frac{ab+2c^2}{a^2+b^2+ab}}=\Sigma\frac{ab+2c^2}{\sqrt{\left(ab+2c^2\right)\left(a^2+b^2+ab\right)}}\)

\(\ge\Sigma\frac{ab+2c^2}{\frac{\left(ab+2c^2\right)+\left(a^2+b^2+ab\right)}{2}}=\Sigma\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+2ab+2c^2}{2}}\)

\(\ge\text{​​}\Sigma\text{​​}\frac{ab+2c^2}{\frac{\left(a^2+b^2\right)+\left(a^2+b^2\right)+2c^2}{2}}=\Sigma\frac{ab+2c^2}{\frac{2\left(a^2+b^2+c^2\right)}{2}}\)

\(=\Sigma\left(ab+2c^2\right)=2\left(a^2+b^2+c^2\right)+ab+bc+ca\)

\(=2+ab+bc+ca\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)