Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mấy bài cơ bản nên cũng dễ, mk có thể giải hết cho bn vs 1 đk : bn đăng từng câu 1 thôi nhé !
bài 3 có thể lên gg tìm kỹ thuật AM-GM (cosi) ngược dấu
bài 8 c/m bđt phụ 5b3-a3/ab+3b2 </ 2b-a ( biến đổi tương đương)
những câu còn lại 1 nửa dùng bđt AM-GM , 1 nửa phân tích nhân tử ròi dựa vào điều kiện
Bài 1:Với \(ab=1;a+b\ne0\) ta có:
\(P=\frac{a^3+b^3}{\left(a+b\right)^3\left(ab\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4\left(ab\right)^2}+\frac{6\left(a+b\right)}{\left(a+b\right)^5\left(ab\right)}\)
\(=\frac{a^3+b^3}{\left(a+b\right)^3}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6\left(a+b\right)}{\left(a+b\right)^5}\)
\(=\frac{a^2+b^2-1}{\left(a+b\right)^2}+\frac{3\left(a^2+b^2\right)}{\left(a+b\right)^4}+\frac{6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a+b\right)^2+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2-1\right)\left(a^2+b^2+2\right)+3\left(a^2+b^2\right)+6}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2\right)^2+4\left(a^2+b^2\right)+4}{\left(a+b\right)^4}=\frac{\left(a^2+b^2+2\right)^2}{\left(a+b\right)^4}\)
\(=\frac{\left(a^2+b^2+2ab\right)^2}{\left(a+b\right)^4}=\frac{\left[\left(a+b\right)^2\right]^2}{\left(a+b\right)^4}=1\)
Bài 2: \(2x^2+x+3=3x\sqrt{x+3}\)
Đk:\(x\ge-3\)
\(pt\Leftrightarrow2x^2-3x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x^2-2x\sqrt{x+3}-x\sqrt{x+3}+\sqrt{\left(x+3\right)^2}=0\)
\(\Leftrightarrow2x\left(x-\sqrt{x+3}\right)-\sqrt{x+3}\left(x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\left(x-\sqrt{x+3}\right)\left(2x-\sqrt{x+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x+3}=x\\\sqrt{x+3}=2x\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x+3=x^2\left(x\ge0\right)\\x+3=4x^2\left(x\ge0\right)\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-x-3=0\left(x\ge0\right)\\4x^2-x-3=0\left(x\ge0\right)\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1+\sqrt{13}}{2}\\x=1\end{cases}\left(x\ge0\right)}\)
Bài 4:
Áp dụng BĐT AM-GM ta có:
\(2\sqrt{ab}\le a+b\le1\Rightarrow b\le\frac{1}{4a}\)
Ta có: \(a^2-\frac{3}{4a}-\frac{a}{b}\le a^2-\frac{3}{4a}-4a^2=-\left(3a^2+\frac{3}{4a}\right)\)
\(=-\left(3a^2+\frac{3}{8a}+\frac{3}{8a}\right)\le-3\sqrt[3]{3a^2\cdot\frac{3}{8a}\cdot\frac{3}{8a}}=-\frac{9}{4}\)
Đẳng thức xảy ra khi \(a=b=\frac{1}{2}\)
moi nguoi oi hom truoc minh hoc tap hop cac so TN do thi co cua minh day nhu sau
vd: A={xeN/3<x<9}
thi minh liet ke ra la A=4,5,6,7,8 nhung sua bai lai ko dung
co sua nhu vay A=3,4,5,6,7,8
ko biet hay sai mong ae giup minh
Áp dụng BĐT Cô-si \(ab\le\frac{\left(a+b\right)}{4}^2\)
=> \(\left(2a+b\right)\left(2c+b\right)\le\frac{4\left(a+b+c\right)^2}{4}=\left(a+b+c\right)^2\)
=> \(\frac{1}{\left(2a+b\right)\left(2c+b\right)}\ge\frac{1}{\left(a+b+c\right)^2}\)
Mấy cái kia làm tương tự cậu nhé
Dấu "=" xảy ra khi và chỉ khi a=b=c=1
Làm trước câu 3:
Ta có:
\(\frac{1x}{a}+\frac{y}{b}=\frac{x+y}{c}\)
\(\Leftrightarrow1bcx+acy=abx+aby\)
\(\Leftrightarrow1x\left(bc-ab\right)=y\left(ab-ac\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{a\left(b-c\right)}{b\left(C-a\right)}\)
Ta cần chứng minh
\(1xa^2+yb^2=\left(x+y\right)c^2\)
\(\Leftrightarrow1x\left(a^2-c^2\right)=y\left(c^2-b^2\right)\)
\(\Leftrightarrow\frac{1x}{y}=\frac{\left(c-b\right)\left(c+b\right)}{\left(a-c\right)\left(a+c\right)}=\frac{a\left(b-c\right)}{b\left(c-a\right)}\)
Vậy ta có ĐPCM
tuổi con HN là :
50 : ( 1 + 4 ) = 10 ( tuổi )
tuổi bố HN là :
50 - 10 = 40 ( tuổi )
hiệu của hai bố con ko thay đổi nên hiệu vẫn là 30 tuổi
ta có sơ đồ : bố : |----|----|----|
con : |----| hiệu 30 tuổi
tuổi con khi đó là :
30 : ( 3 - 1 ) = 15 ( tuổi )
số năm mà bố gấp 3 tuổi con là :
15 - 10 = 5 ( năm )
ĐS : 5 năm
mình nha
18. Ta có : \(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}=0\Rightarrow\frac{ayz+bxz+cxy}{xyz}=0\Rightarrow ayz+bxz+cxy=0\)
\(\left(\frac{x}{a}+\frac{y}{b}+\frac{z}{c}\right)^2=1\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2\left(\frac{xy}{ab}+\frac{yz}{bc}+\frac{xz}{ac}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{1}{abz}+\frac{1}{xbc}+\frac{1}{acy}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}+2xyz\left(\frac{ayz+bxz+cxy}{abcxyz}\right)=1\)
\(\Leftrightarrow\frac{x^2}{a^2}+\frac{y^2}{b^2}+\frac{z^2}{c^2}=1\)
19. Nhân cả hai vế của đẳng thức giả thiết với \(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\)được
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)\left(\frac{1}{b-c}+\frac{1}{c-a}+\frac{1}{a-b}\right)=0\)
\(\Leftrightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}+\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=0\)
Ta có ;
\(\frac{a+b}{\left(b-c\right)\left(c-a\right)}+\frac{b+c}{\left(c-a\right)\left(a-b\right)}+\frac{c+a}{\left(a-b\right)\left(b-c\right)}=\frac{\left(a+b\right)\left(a-b\right)+\left(b+c\right)\left(b-c\right)+\left(c+a\right)\left(c-a\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(=\frac{a^2-b^2+b^2-c^2+c^2-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}=0\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Đặt \(\left(\frac{1}{a},\frac{1}{b},\frac{1}{c}\right)=\left(x,y,z\right)\)
\(x+y+z\ge\frac{x^2+2xy}{2x+y}+\frac{y^2+2yz}{2y+z}+\frac{z^2+2zx}{2z+x}\)
\(\Leftrightarrow x+y+z\ge\frac{3xy}{2x+y}+\frac{3yz}{2y+z}+\frac{3zx}{2z+x}\)
\(\frac{3xy}{2x+y}\le\frac{3}{9}xy\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}\right)=\frac{1}{3}\left(x+2y\right)\)
\(\Rightarrow\Sigma_{cyc}\frac{3xy}{2x+y}\le\frac{1}{3}\left[\left(x+2y\right)+\left(y+2z\right)+\left(z+2x\right)\right]=x+y+z\)
Dấu "=" xảy ra khi x=y=z
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Ta có:
VT = \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{a}{\left(b-1\right)\left(b^2+b+1\right)}+\frac{b}{\left(a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a}{-a\left(b^2+b+1\right)}+\frac{b}{-b\left(a^2+a+1\right)}=\frac{-1}{b^2+b+1}-\frac{1}{a^2+a+1}\)
\(=\frac{-a^2-a-1-b^2-b-1}{\left(b^2+b+1\right)\left(a^2+a+1\right)}=\frac{-a^2-b^2-3}{a^2b^2+ab^2+b^2+a^2b+ab+b+a^2+a+1}\)
\(=\frac{-\left[\left(a+b\right)^2-2ab\right]-3}{a^2b^2+ab\left(a+b\right)+\left(a+b\right)^2+ab-2ab+\left(a+b\right)+1}\)
\(=\frac{-\left[1-2ab\right]-3}{a^2b^2+ab+1-ab+1+1}\)
\(=\frac{2\left(ab-2\right)}{a^2b^2+3}=VP\)
Vậy nên VT = VP hay \(\frac{a}{b^3-1}+\frac{b}{a^3-1}=\frac{2\left(ab-2\right)}{a^2b^2+3}\) (dpcm)