Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
kẻ MH vuông góc với AB.
Th1: H nằm trong đoạn AB (hình vẽ)
Đặt \(AB=c\).
áp dụng định lý pitago ta có: \(MA^2=MH^2+HA^2,MB^2=MH^2+HB^2\)
SUY RA: \(MA^2-MB^2=HA^2-HB^2=\left(HA-HB\right)\left(HA+HB\right)=a\)
Do H nằm trên đoạn AB nên HA+HB=a từ đó suy ra: \(HA-HB=\frac{a}{HA+HB}=\frac{a}{c}\)
Mà HA+HB=c suy ra: \(HA=\left(\frac{a}{c}+c\right):2=\frac{a+c^2}{2c}\)(không đổi).
Suy ra M nằm trên đường thẳng qua H ( H thuộc đoạn AB, \(HA=\frac{a+c^2}{2c}\)) vuông góc với AB.
TH2: H nằm ngoài đoạn AB ta có HA-HB=AB=c. Lập luận tương tự ta cũng có kết quả như TH1.
a) M ∈ đường tròn đường kính AB
ΔBMI vuông tại M
⇒ tan I = MB / MI = 1/2
b) Dự đoán: Quỹ tích điểm I là hai cung là các cung chứa góc 26º34’ dựng trên đoạn AB.
Chứng minh:
+ Phần thuận :
Theo phần a): không đổi
I nằm trên cung chứa góc 26º34’ dựng trên đoạn AB cố định
Kẻ tiếp tuyến của đường tròn tại A cắt hai cung chứa góc 26º34’ dựng trên đoạn AB tại C và D
Khi M di động trên đường tròn đường kính AB cố định thì I di động trên cung BC và BD
⇒ I nằm trên hai cung chứa góc 26º34’ dựng trên đoạn AB cố định.
+ Phần đảo:
Lấy điểm I bất kỳ nằm trên hai cung nhìn AB dưới 1 góc 26º34’.
AI cắt đường tròn đường kính AB tại M.
⇒ BM /MI = tan I = 1/2.
Kết luận: Quỹ tích điểm I là hai cung nhìn AB dưới góc 26º34’ (hình vẽ).
Kiến thức áp dụng
+ Trong một tam giác vuông, tan α = cạnh đối / cạnh huyền.
Nối MA, MB tạo thành tam giác MAB
C là trung điểm của AB
áp dụng công thức đường trung tuyến
\(MC^2=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\) (*)
Lâu rồi tôi không nhớ là có được áp dụng công thức này hay không nếu phải chứng minh ta chứng minh như sau:
Áp dụng định lý hàm cos
Xét tg MAC có
\(MC^2=MA^2+AC^2-2.MA.AC.\cos\widehat{A}\) (1)
Xét tg MAB có
\(MB^2=MA^2+AB^2-2.MA.AB.\cos\widehat{A}\Rightarrow\cos\widehat{A}=\frac{MA^2+AB^2-MB^2}{2.MA.AB}\) Thay vào (1) ta có
\(MC^2=MA^2+AC^2-2.MA.AC.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)
\(MC^2=MA^2+\frac{AB^2}{4}-2.MA.\frac{AB}{2}.\frac{MA^2+AB^2-MB^2}{2.MA.AB}\)
\(MC^2=MA^2+\frac{AB^2}{4}-\frac{MA^2+AB^2-MB^2}{2}=\frac{2\left(MA^2+MB^2\right)-AB^2}{4}\left(dpcm\right)\)
Từ (*)\(\Rightarrow MC^2=\frac{2.\frac{3a^2}{4}-a^2}{4}=\frac{a^2}{8}\Rightarrow MC=\frac{a}{2\sqrt{2}}\)
AB cố định => C cố định, M cách C cố định 1 khoảng không đổi \(=\frac{a}{2\sqrt{2}}\) nên M nằm trên đường tròn tâm C có bán kính\(=\frac{a}{2\sqrt{2}}\)
a) Vì = 90o (góc nội tiếp chắn nửa đường tròn) suy ra trong tam giác vuông MIB có tg = = => = 26o34’
Vậy không đổi.
b) Phần thuận:
Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung và )
Phần đảo:
Lấy điểm I' bất kì thuộc hoặc , I'A cắt đường tròn đường kính AB tại M'.
Tam giác vuông BMT, có tg = = tg26o34’
Kết luận: Quỹ tích điểm I là hai cung và
a) Vì \(\widehat{BMA}\)= 90o (góc nội tiếp chắn nửa đường tròn) suy ra trong tam giác vuông MIB có tg\(\widehat{AIB}\) = \(\dfrac{MB}{MI}\) = \(\dfrac{1}{2}\) =>\(\widehat{AIB}\) = 26o34’
Vậy \(\widehat{AIB}\) không đổi.
b) Phần thuận:
Khi điểm M chuyển động trên đường tròn đường kính AB thì điểm I cũng chuyển động, nhưng luôn nhìn đoạn thẳng AB cố định dưới góc 26o34’, vậy điểm I thuộc hai cung chứa góc 26o34’ dựng trên đoạn thẳng AB (hai cung và )
Phần đảo:
Lấy điểm I' bất kì thuộc hoặc , I'A cắt đường tròn đường kính AB tại M'.
Tam giác vuông BMT, có tg\(\widehat{I'}\) = \(\dfrac{M'B}{M'I'}\) = tg26o34’
Kết luận: Quỹ tích điểm I là hai cung và
1: ΔONP cân tại O
mà OK là trung tuyến
nên OK vuông góc NP
góc OKM=góc OAM=góc OBM=90 độ
=>O,K,A,M,B cùng thuộc 1 đường tròn
2: góc AKM=góc AOM
góc BKM=góc BOM
góc AOM=góc BOM
=>góc AKM=góc BKM
=>KM là phân giác của góc AKB
Chào ng đẹp
a) ANC=90 chắn nữa dg tròn =>ANC+CAN+CAB+ABC=180
=>ANC+CAN+ACN+ACB+CAB+ABC=360
=>ACN+ACB=180
=>b,c,n THẲNG HÀNG
Chứng minh tương tự A,N,D...
Đây là bài toán về đường tròn Apollonius tỉ số k dựng trên đoạn AB. Ta giải như sau:
Trường hợp 1: k = 1. Khi đó ta thấy ngay MA = MB. Vậy quỹ tích những điểm M chính là đường trung trực của AB.
Trường hợp 2: \(k\ne1\).
Phần thuận. Gọi C, D là các điểm chia trong và chia ngoài đoạn thẳng AB theo tỉ số k. Ta có \(\frac{CA}{CB}=\frac{DA}{DB}=k\) (C nằm giữa A, B và D nằm ngoài đọan AB). Khi đó nếu M trùng C, D thì thỏa mãn đẳng thức.
Nếu M khác C và D. Ta có \(\frac{MA}{MB}=\frac{CA}{CB}=\frac{DA}{DB}\) nên MC, MD lần lượt là phân giác trong và phân giác ngoài của góc AMB. Do đó góc CMD = 90 độ hay M thuộc đường tròn đường kính CD.
Phần đảo. Lấy M bất kì thuộc đường tròn đường kính CD. Nếu M trùng C hoặc D thì xong.
Nếu M khác C và D. Qua A vẽ đuờng thẳng vuông góc với MC cắt MB tại I và cắt MC tại K. Ta có \(\frac{AI}{MD}=\frac{BA}{BD}=1-k\) . Vì \(k=\frac{DA}{DB}=\frac{CA}{CB}=\left(DC-2AC\right)\left(DB-BC\right)=1-\frac{2CA}{CD}\)nên \(\frac{AK}{MD}=\frac{AC}{CD}=\)\(\frac{1-k}{2}\) .Do đó AI = 2.AK, suy ra K là trung điểm AI, suy ra MI = MA. Từ đó \(\frac{MA}{MB}=\frac{MI}{MB}=\frac{DA}{DB}=k\). Vậy với k ≠ 1, quỹ tích những điểm M thỏa mãn \(\frac{MA}{MB}=k\) là đường tròn đường kính CD.
Chúc em học tốt :)