K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 9 2017

A B C M I J H K P

Kẻ MP\(⊥\)AH

Ta có AKMJ, PMIH là hình chữ nhật

=> \(MI^2+MJ^2+MK^2=AM^2+PH^2\ge AP^2+PH^2\ge\frac{\left(AP+PH\right)^2}{2}=\frac{AH^2}{2}\)

Dấu = xảy ra khi M là trung điểm AH

8 tháng 8 2020

ai mà biết

15 tháng 9 2016

Bài 2.  A B C M D E F

Áp dụng định lí Pytago ta có : 

\(AM^2=AF^2+FM^2=AE^2+ME^2\)

\(BM^2=BD^2+MD^2=MF^2+BF^2\)

\(MC^2=ME^2+EC^2=MD^2+DC^2\)

\(\Rightarrow AF^2+FM^2+BD^2+MD^2+ME^2+EC^2=AE^2+ME^2+MF^2+BF^2+MD^2+DC^2\)

\(\Rightarrow BD^2+CE^2+AF^2=DC^2+EA^2+FB^2\)

 

15 tháng 9 2016

bn giúp mk bài 1 đc k Ngọc

Bài 1:Giải pt(không dùng máy tính)a)\(x=\sqrt[3]{4x^2-x-6}\)b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)c)\(x^4-x^2+1=-x^2+4x-2\)Bài 2:Cho f(x)=(a-89)(a-90)x+1 Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)So sánh \(f\left(m\right)\)và \(f\left(n\right)\)Bài 3.Cho...
Đọc tiếp

Bài 1:Giải pt(không dùng máy tính)

a)\(x=\sqrt[3]{4x^2-x-6}\)

b)\(\sqrt{x}^3=\left(\sqrt{x}-4\right)^2\)

c)\(x^4-x^2+1=-x^2+4x-2\)

Bài 2:Cho f(x)=(a-89)(a-90)x+1 

Biết a=\(1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2019}}\)

Cho \(m=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2020\sqrt{2019}+2019\sqrt{2020}}\)

      \(n=\sqrt[3]{\sqrt{10}-\sqrt{3}}\)

So sánh \(f\left(m\right)\)và \(f\left(n\right)\)

Bài 3.Cho (d):\(y=\left(m^2+1\right)x-3m^2+1\)(m là tham số)

Lấy N(-1;7).Kẻ NH vuông góc với (d) ở H sao cho NH=5 cm.

a)Tìm m

b)Gọi d1;d2;...;d2019 đồng quy với NH tại 1 điểm thuộc đoạn NH.Gọi h1;h2;...;h2019 lần lượt là khoảng cách từ O đến d1;d2;...;d2019.

Tìm max của h1+h2+...+h2019.

Bài 4:Cho tam giác ABC nhọn.AH vuông BC ở H.Phân giác BM của góc ABC (M thuộc AC).Kẻ CE vuông AB ở E.CE cắt BM ở l.AH cắt BM ở F.CMR:BM.BI.BA=BC.BH.BK

Bài 5:Cho tam giác ABC nhọn.CMR:tanA+tanB+tanC=tanA.tanB.tanC.

Bài 6:Cho 2005 điểm thuộc cùng 1 mặt phẳng(không có điểm nào trùng nhau) sao cho trong 3 điểm bất kì ta luôn tìm được 2 điểm có khoảng cách nhỏ hơn 25 cm.CMR tồn tại 1 đường tròn bán kính 25 cm chứa ít nhất 1003 điểm trên

 

0
18 tháng 6 2017

1 ,áp dụng bộ 3 pitago trong tam giác abc  suy ra AC=5 cm dựa vào pitago đảo có : \(5^2+12^2\)= 13 suy ra tam giác ACD vuông tại c  

S tứ giác = SABC  +SADC =1/2 .3.4 +1/2. 5.12=36 cm ^2.

2,bài 2 vẽ hình lâu lém tự làm nha bn 

3,

18 tháng 6 2017

B1 minh da lam dc trc do roi nhung van cam on ban vi da giup do

26 tháng 8 2020

ĐỀ BÀI THIẾU \(\widehat{BAC}=105^0\). Hình vẽ trong TKHĐ

Qua A kẻ đường thẳng vuông góc với AC cắt BC tại M. Tại E kẻ đường thẳng song song với AH cắt AC tại D.

Xét tam giác ABE có AB=BE=1 mà ^ABE=600 nên tam giác ABE đều. Khi đó 

\(AH=AB\cdot\sin\widehat{ABH}=\sin60^0=\frac{\sqrt{3}}{2}\)

Dễ thấy \(\Delta MAE=\Delta ADE\left(g.c.g\right)\Rightarrow AD=AM\Rightarrow\Delta\)AMC vuông tại A có đường cao AH theo hệ thức lượng:

\(\frac{1}{AC^2}+\frac{1}{AM^2}=\frac{1}{AH^2}\Rightarrow\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{1}{\left(\frac{\sqrt{3}}{2}\right)^2}=\frac{4}{3}\)

26 tháng 8 2020

Gọi F đối xứng với C qua A. Khi đó tam giác FBC vuông tại F.

Theo hệ thức lượng thì \(BC^2=HC\cdot CF\). Mặt khác \(BC^2=2AB\cdot HC\)

Đến đây dễ rồi nha, làm tiếp thì chán quá :(

18 tháng 5 2019

Gọi a là độ dài cạnh của tam giác ABC

+ Ta có : \(S_{AMB}+S_{BMC}+S_{AMC}=S_{ABC}\)

\(\Rightarrow\frac{1}{2}\cdot x\cdot a+\frac{1}{2}\cdot y\cdot a+\frac{1}{2}\cdot z\cdot a=\frac{1}{2}\cdot a\cdot h\)

\(\Rightarrow\frac{1}{2}a\left(x+y+z\right)=\frac{1}{2}a\cdot h\)

\(\Rightarrow x+y+z=h\)             ( do \(\frac{1}{2}a\ne0\) )

\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)

\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}h^2\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z\)

<=> M là giao điểm 3 đg phân giác của tam giác ABC

1 tháng 12 2017

a) Ta có \(AM=AC-MC=AC-MB=b-d\)

Xét tam giác vuông ABM, theo định lý Pi-ta-go ta có:

\(c^2+\left(b-d\right)^2=d^2\Leftrightarrow c^2+b^2-2bd+d^2=d^2\)

\(\Leftrightarrow c^2+b^2-2bd=0\)

Mà tam giác ABC vuông tại A nên \(b^2+c^2=a^2\)

\(\Rightarrow a^2=2bd\Rightarrow4bc=2bd\Rightarrow d=2c\left(đpcm\right)\)

b) Xét tam giác vuông ABM có \(BM=2BA\Rightarrow\widehat{ABM}=60^o\Rightarrow\widehat{AMB}=36^o\)

Xét tam giác cân MBC có \(\widehat{AMB}\) là góc ngoài tại đỉnh cân nên \(\widehat{AMB}=2\widehat{MBC}=2\widehat{MCB}\)

\(\Rightarrow\widehat{MCB}=\widehat{MBC}=\frac{30^o}{2}=15^o\)

Vậy nên \(\widehat{ABC}=\widehat{ABM}+\widehat{MBC}=60^o+15^o=75^o\)

\(\widehat{ACB}=\widehat{MCB}=15^o\)