![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(det=\left|\begin{matrix}1&-m\\m&1\end{matrix}\right|=1+m^2\ne0\) với mọi m => Hệ phương trình bậc nhất hai ẩn luôn có nghiệm
b) Ta có:
x0 - my0 = 2 - 4m
mx0 + y0 = 3m + 1
Hay là:
x0 - 2 = m (y0 - 4)
y0 - 1 = m (3 - x0)
=> Chia hai vế cho nhau ta được
\(\frac{x_0-2}{y_0-1}=\frac{y_0-4}{3-x_0}\)
=> (x0 - 2)(3 - x0) = (y0 - 4)(y0 - 1)
=> -x02 + 5x0 - 6 = y02 - 5y0 + 4
=> x02 + y02 - 5(x0 + y0) = -10
ĐPCM
![](https://rs.olm.vn/images/avt/0.png?1311)
Tam giác ABC vuông tại A do BC^2 = AB^2 + AC^2
=> Tâm O là trung điểm BC
=> Khoảng cách từ O đến dây AB là đường trung bình = AC/2 = 6
2>>
r(a+b+c) =2S = AB*AC = 12
a^2= b^2 + c^2 = 25 => a =5
=> r = 12/(3+4+5) =1
3>>
Như câu 1>>
OI = AB/2 = 3
OM = R =BC/2 = 5 (tam giác vuông tại A nhận BC làm đk)
=> IM = OM-OI =2
Tích mình đúng nha
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi đàn thiên nga là x , ta có :
x + \(\frac{1}{2}\) x + 2 = 200
x + \(\frac{1}{2}\) x = 200 - 2 = 198
x . ( 1 + \(\frac{1}{2}\) ) = 198
x . \(\frac{3}{2}\) = 198
x = 198 : \(\frac{3}{2}\)
x = 132
Vậy đàn thiên nga có 132 con
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt \(\sqrt{x}=t\left(t\ge0\right)\) ta có:
\(f\left(t\right)=t^8-t^5+t^2-t+1\)
*)Với \(t=0;t=1\Rightarrow f\left(t\right)=1>\)
*)Với \(0\le t< 1\) thì \(f\left(t\right)=t^8+\left(t^2-t^5\right)+1-t\)
\(\left\{{}\begin{matrix}t^8>0\\1-t>0\\t^2-t^5=t^3\left(1-t\right)>0\end{matrix}\right.\)\(\Rightarrow f\left(t\right)>0\)
*)Với \(t\ge1\) thì \(f\left(t\right)=t^5\left(t^3-1\right)+t\left(t-1\right)+1>0\)
Vậy \(f\left(t\right)>0\forall t\ge0\Rightarrow x^4-\sqrt{x^5}+x-\sqrt{x}+1>0\forall x\ge0\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hai tam giác vuông DAM và ABN bằng nhau (cạnh cạnh cạnh)
\(\Rightarrow\widehat{ADM}=\widehat{BAN}\) mà \(\widehat{BAN}+\widehat{DAN}=90^0\Rightarrow\widehat{ADM}+\widehat{DAN}=90^0\)
\(\Rightarrow AN\perp DM\Rightarrow\) đường thẳng AN nhận \(\left(3;-1\right)\) là 1 vtpt
Phương trình AN:
\(3\left(x-\frac{7}{2}\right)-1\left(y-\frac{3}{2}\right)=0\Leftrightarrow3x-y-9=0\)
Tọa độ A là nghiệm: \(\left\{{}\begin{matrix}2x-y-6=0\\3x-y-9=0\end{matrix}\right.\) \(\Rightarrow A\left(3;0\right)\)
\(\Rightarrow\overrightarrow{AN}=\left(\frac{1}{2};\frac{3}{2}\right)\Rightarrow AN=\frac{\sqrt{10}}{2}\)
Pitago tam giác ABN: \(AB^2+BN^2=AN^2\)
\(\Rightarrow AB^2+\frac{1}{4}AB^2=\frac{5}{2}\Rightarrow AB^2=S_{ABCD}=2\)
Gọi \(B\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(x-3;y\right)\\\overrightarrow{NB}=\left(x-\frac{7}{2};y-\frac{3}{2}\right)\end{matrix}\right.\)
\(\left\{{}\begin{matrix}AB\perp BN\\AB^2=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-3\right)\left(x-\frac{7}{2}\right)+y\left(y-\frac{3}{2}\right)=0\\\left(x-3\right)^2+y^2=2\end{matrix}\right.\)
Giải hệ này tìm x; y (rút gọn, trừ vế cho vế, rút y theo x rồi thay vào 1 trong 2 pt giải)
Có tọa độ B \(\Rightarrow\) tọa độ C (thông qua N là trung điểm BC)
Viết pt CD qua C (đã biết) và song song AB (đã biết vtcp nên biết vtpt của CD)