K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2018

Ta có : \(a+b>1>0\) (1)

Bình phương hai vế: \(\left(a+b\right)^2>1\Rightarrow a^2+2ab+b^2>1\left(2\right)\)

Mặt khác : \(\left(a-b\right)^2\ge0\Rightarrow a^2-2ab+b^2\ge0\left(3\right)\)

Cộng từng vế của (2) và (3): \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\dfrac{1}{2}\left(4\right)\)

Bình phương hai vế của (4) : \(a^4+2a^2b^2+b^4>\dfrac{1}{4}\left(5\right)\)

Mặt khác \(\left(a^2-b^2\right)^2\ge0\Rightarrow a^4-2a^2b^2+b^4\ge0\left(6\right)\)

cộng từng vế của (5) và (6) : \(2\left(a^4+b^4\right)>\dfrac{1}{4}\Rightarrow a^4+b^4>\dfrac{1}{8}\)(đpcm)

6 tháng 3 2018

Cm được x² +y² ≥ (x+y)²/2

<=> x² +y² ≥ 1/2(x² +y²) + xy

<=> 1/2(x² +y²) -xy ≥ 0

<=> 1/2(x-y)² ≥ 0 ( luôn đúng )

vậy x² + y² ≥ (x+y)²/2 = 1/2

tương tự thì x^4 + y^4 ≥ (x² +y²)²/2 ≥ (1/2)²/2 = 1/8

vậy x^4 + y^4 ≥ 1/8

dấu = xảy ra <=> x=y=1/2

20 tháng 3 2016

ta có (a-b)^2 >= 0 => a^2 + b^2 >= 2ab

                           => 2(a^2+b^2) >= a^2+2ab+b^2

                           => 2(a^2+b^2) >= (a+b)^2 >1 ( vì a+b >1)

                           => a^2+ b^2 >1/2 

          tương tự ta có a^4+b^4 >1/8

7 tháng 4 2017

ta có: a+b=1 => (a+b)2=1

a2+2ab+b2=1 (1)

Mặt khác: (a-b)2\(\ge0\Leftrightarrow a^2-2ab+b^2\ge0\) (2)

Cộng (1) và (2) vế theo vế:

2(a2+b2) > 1

a2+b2> \(\dfrac{1}{2}\)

\(\Leftrightarrow a^4+2a^2b^2+b^4>\dfrac{1}{4}\) (3)

\(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\) (4)

cộng (3) và (4) vế theo vế:

2(a4+b4) >\(\dfrac{1}{4}\)

=> \(a^4+b^4>\dfrac{1}{8}\left(đpcm\right)\)

7 tháng 4 2017

Ta có: \(\left(a+b\right)^2\ge4ab\)mà a+b=1

\(\Rightarrow ab< \dfrac{1}{4}\Rightarrow a^2b^2< \dfrac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\)

\(\Rightarrow a^4+b^4>2.\dfrac{1}{16}=\dfrac{1}{8}\)

4 tháng 5 2019

https://hoc24.vn/hoi-dap/question/570547.html

20 tháng 10 2019

a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)  

\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)

\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)

dau = xay ra <=> a=b=1/2

chuc ban hoc tot

mik phai di ngu nen lam hoi tat mong bn thong cam

phan b bn lam tuong tu nha

21 tháng 10 2019

1/ Ta có:

\(\left(a-b\right)^2\ge0,\) mọi a, b

<=> \(a^2-2ab+b^2\ge0\)

<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)

<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

Dấu bằng xảy ra <=>  a - b = 0 <=> a  = b.

2/ Dựa vào câu 1. 

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).

18 tháng 8 2016

Ta có : \(a^2+b^2+2ab>1\)

Lại có \(a^2-2ab+b^2\ge0\)

Cộng hai vế bđt trên được \(2\left(a^2+b^2\right)>1\Rightarrow a^2+b^2>\frac{1}{2}\)

\(a^4+2a^2b^2+b^4>\frac{1}{4}\)

Lại có : \(a^4-2a^2b^2+b^4\ge0\)

Cộng hai vế bđt trên được \(2\left(a^4+b^4\right)>\frac{1}{4}\Rightarrow a^4+b^4>\frac{1}{8}\)

18 tháng 8 2016

Tương tự ta được:

\(\left(a+b\right)^2\ge4ab,a+b=1\)

\(\Rightarrow ab< \frac{1}{4}\Rightarrow a^2b^2< \frac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\Rightarrow a^4+b^4>2.\frac{1}{16}=\frac{1}{8}\)

1 tháng 4 2017

c) Áp dụng BĐT cô si cho 2 hai số dương \(a;b\) ta có:

\(a+b\ge2\sqrt{ab}\)

\(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{\sqrt{ab}}\)

\(\Rightarrow\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

Dấu "=" xảy ra khi \(\Leftrightarrow a=b\)

DD
4 tháng 7 2021

a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)

\(\Leftrightarrow a^2+b^2\ge2\).

Dấu \(=\)khi \(a=b=1\).

b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)

\(\Leftrightarrow a^4+b^4\ge2\)

Dấu \(=\)khi \(a=b=1\).

c) Bạn làm tương tự. 

bạn j ơi a^2+b^2 có = 2 đâu

25 tháng 10 2015

ta có \(\left(a+b\right)^2\ge4ab\)   mà \(a+b=1\)

=>\(ab<\frac{1}{4}\)=>\(a^2b^2<\frac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\)=>\(a^4+b^4>2.\frac{1}{16}=\frac{1}{8}\)

25 tháng 10 2015

tick cho mình cái mình trả lời rồi mà.