K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

ta có: a+b=1 => (a+b)2=1

a2+2ab+b2=1 (1)

Mặt khác: (a-b)2\(\ge0\Leftrightarrow a^2-2ab+b^2\ge0\) (2)

Cộng (1) và (2) vế theo vế:

2(a2+b2) > 1

a2+b2> \(\dfrac{1}{2}\)

\(\Leftrightarrow a^4+2a^2b^2+b^4>\dfrac{1}{4}\) (3)

\(\left(a^2-b^2\right)^2\ge0\Leftrightarrow a^4-2a^2b^2+b^4\ge0\) (4)

cộng (3) và (4) vế theo vế:

2(a4+b4) >\(\dfrac{1}{4}\)

=> \(a^4+b^4>\dfrac{1}{8}\left(đpcm\right)\)

7 tháng 4 2017

Ta có: \(\left(a+b\right)^2\ge4ab\)mà a+b=1

\(\Rightarrow ab< \dfrac{1}{4}\Rightarrow a^2b^2< \dfrac{1}{16}\)

Mặt khác \(a^4+b^4\ge2a^2b^2\)

\(\Rightarrow a^4+b^4>2.\dfrac{1}{16}=\dfrac{1}{8}\)

20 tháng 10 2019

a) \(a^2+b^2=a^2+\frac{1}{4}+b^2+\frac{1}{4}-\frac{1}{2}\)  

\(\ge2\sqrt{a^2.\frac{1}{4}}+2\sqrt{b^2.\frac{1}{4}}-\frac{1}{2}\) (bdt cosi)

\(=a+b-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}\) (vi a+b=1)

dau = xay ra <=> a=b=1/2

chuc ban hoc tot

mik phai di ngu nen lam hoi tat mong bn thong cam

phan b bn lam tuong tu nha

21 tháng 10 2019

1/ Ta có:

\(\left(a-b\right)^2\ge0,\) mọi a, b

<=> \(a^2-2ab+b^2\ge0\)

<=> \(2a^2+2b^2\ge a^2+2ab+b^2\)

<=> \(2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

<=> \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}=\frac{1}{2}\)

Dấu bằng xảy ra <=>  a - b = 0 <=> a  = b.

2/ Dựa vào câu 1. 

\(a^4+b^4\ge\frac{\left(a^2+b^2\right)^2}{2}\ge\frac{\left(\frac{1}{2}\right)^2}{2}=\frac{1}{8}\).

4 tháng 5 2019

https://hoc24.vn/hoi-dap/question/570547.html

12 tháng 9 2020

1, \(A=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{x^2-1}\)

\(=\frac{9}{x+1}-\frac{8}{1-x}-\frac{16}{\left(x-1\right)\left(x+1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)}{\left(x+1\right)\left(1-x\right)\left(x-1\right)}-\frac{8\left(x+1\right)\left(x-1\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}-\frac{16\left(1-x\right)}{\left(1-x\right)\left(x+1\right)\left(x-1\right)}\)

\(=\frac{9\left(1-x\right)\left(x-1\right)-8\left(x+1\right)\left(x-1\right)-16\left(1-x\right)}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{18x-9-9x^2-8x^2+8-16+16x}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17x^2+34x-17}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}\)

\(=\frac{-17\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)\left(1-x\right)}=\frac{-17\left(x-1\right)}{\left(x+1\right)\left(1-x\right)}\)

12 tháng 9 2020

2, \(B=\frac{x^2+10x+25}{x+5}-\frac{x^2-6x+9}{x-3}\)

\(=\frac{\left(x+5\right)^2}{x+5}-\frac{\left(x-3\right)^2}{x-3}=x+5-x+3=8\)

27 tháng 2 2017

Theo bất đẳng thức tam giác

\(\Rightarrow\left\{\begin{matrix}a< b+c\\b< c+a\\c< a+b\end{matrix}\right.\Rightarrow\left\{\begin{matrix}b+c-a>0\\c+a-b>0\\a+b-c>0\end{matrix}\right.\)

Áp dụng bất đẳng thức \(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\forall a,b>0\)

\(\Rightarrow\left\{\begin{matrix}\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}\ge\dfrac{2}{b}\\\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{2}{c}\\\dfrac{1}{a+b-c}+\dfrac{1}{a+c-b}\ge\dfrac{2}{a}\end{matrix}\right.\)

Cộng theo từng vế

\(\Rightarrow2\left(\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\right)\ge2\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\)

\(\Rightarrow\dfrac{1}{a+b-c}+\dfrac{1}{b+c-a}+\dfrac{1}{a+c-b}\ge\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) ( đpcm )

27 tháng 2 2017

câu 1: a+b>?

20 tháng 6 2018

a, Ta có :

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Rightarrow\frac{(a+b)}{ab}\ge\frac{4}{(a+b)}\)

\(\Rightarrow(a+b)^2\ge4ab\)

\(\Rightarrow(a-b)^2\ge0(đpcm)\)

Mình để cho dấu lớn bằng để dễ hiểu nha bạn

c,Ta có : \(x^2-4x+5=(x^2-4x+4)+1=(x-2)^2+1\ge1\)

Dấu " = "xảy ra  khi : \((x-2)^2=0\Rightarrow x=x-2=0\Rightarrow x=2\)

Rồi bạn tự suy ra.Mk chắc đúng không nữa nên bạn thông cảm

Còn câu b và d bạn tự làm nhé

Chúc bạn học tốt

20 tháng 6 2018

\(a,\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\frac{a+b}{ab}-\frac{4}{a+b}\ge0\)

\(\Leftrightarrow\frac{a^2+2ab+b^2-4ab}{ab\left(a+b\right)}\ge0\)

\(\Leftrightarrow\frac{a^2-2ab+b^2}{ab\left(a+b\right)}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab\left(a+b\right)}\ge0\)(luôn đúng vì a>0,b>0)

dấu ''='' xảy ra khi và chỉ khi a=b

\(b,x+\frac{1}{x}\ge2\)

\(\Leftrightarrow x-2+\frac{1}{x}\ge0\)

\(\Leftrightarrow\frac{x^2-2x+1}{x}\ge0\Leftrightarrow\frac{\left(x-1\right)^2}{x}\ge0\)(luôn đúng)

dấu''='' xảy ra khi và chỉ khi x=1

áp dụng\(x+\frac{1}{x}\ge2\)(c/m trên)  =>GTNN là 2 

dấu ''='' xay ra khi và chỉ khi x=1

\(c,\Leftrightarrow\left(x-2\right)^2+1\ge1\)

=> GTNN là 1 tại x=2

\(d,\frac{-\left(x^2+4x+4+6\right)}{x^2+2018}=\frac{-\left(x+2\right)-6}{x^2+2018}< 0\)

vì -(x+2 )-6 <-6