Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT AM - GM:
\(\frac{3}{2}\ge a+b+c\ge3\sqrt[3]{abc}\) \(\Rightarrow abc\le\frac{1}{8}\)
\(1+1+1+\frac{1}{2a}+\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)
\(\Leftrightarrow3+\frac{1}{a}+\frac{1}{b}\ge7\sqrt[7]{\frac{1}{16a^2b^2}}\)
Tương tự ta CM được:
\(3+\frac{1}{b}+\frac{1}{c}\ge7\sqrt[7]{\frac{1}{16b^2c^2}}\)
\(3+\frac{1}{c}+\frac{1}{a}\ge\ge7\sqrt[7]{\frac{1}{16c^2a^2}}\)
Nhân vế theo vế 3 bất đẳng thức trên:
\(S\ge343\sqrt[7]{\frac{1}{4096a^4b^4c^4}}\ge343\sqrt[7]{\frac{1}{4096.\frac{1}{8^4}}}=343\)
\(\Rightarrow Min_S=343\Leftrightarrow a=b=c=\frac{1}{2}\)
\(\frac{1}{a^4\left(1+b\right)\left(1+c\right)}=\frac{1}{\frac{a^4\left(1+b\right)\left(1+c\right)}{abc}}=\frac{\frac{1}{a^3}}{\left(\frac{1}{b}+1\right)\left(\frac{1}{c}+1\right)}\)
Đặt \(\left(x;y;z\right)=\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)\), tương tự suy ra:
\(A=\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{y^3}{\left(1+x\right)\left(1+z\right)}+\frac{z^3}{\left(1+x\right)\left(1+y\right)}\)
Theo BĐT AM-GM ta có: \(\frac{x^3}{\left(1+y\right)\left(1+z\right)}+\frac{1+y}{8}+\frac{1+z}{8}\ge\frac{3x}{4}\)
Tương tự suy ra \(A+\frac{3}{4}+\frac{x+y+z}{4}\ge\frac{3\left(x+y+z\right)}{4}\)
\(\Rightarrow A\ge\frac{x+y+z}{2}-\frac{3}{4}\ge\frac{3\sqrt[3]{xyz}}{2}-\frac{3}{4}=\frac{3}{4}\)
Dấu = xảy ra khi x=y=z=1 hay a=b=c=1
\(P=\left(1+\frac{a}{3b}\right)\left(1+\frac{c}{3a}+\frac{b}{3c}+\frac{b}{9a}\right)\)
\(P=1+\frac{1}{3}\left(\frac{c}{a}+\frac{b}{c}+\frac{a}{b}\right)+\frac{1}{9}\left(\frac{c}{b}+\frac{a}{c}+\frac{b}{a}\right)+\frac{1}{27}\)
\(P\ge1+\frac{1}{27}+\frac{1}{3}.3\sqrt[3]{\frac{abc}{abc}}+\frac{1}{9}.3\sqrt[3]{\frac{abc}{abc}}=\frac{64}{27}\)
\(\Rightarrow P_{min}=\frac{64}{27}\) khi \(a=b=c\)
Áp dụng BĐT AM - GM
\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta co:\(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\le\sqrt{2}\)
Ta lai co:
\(A=\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)+2\)
\(\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2=4+3\sqrt{2}\)
Dau '=' xay ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Vay \(A_{min}=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)
Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?
\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)
Áp dụng xuống dưới ta có:
\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)
\(S=1+\frac{1}{a}+\frac{1}{b}+\frac{1}{ab}=1+\frac{1}{a}+\frac{1}{b}+\frac{a+b}{ab}=1+\frac{2}{a}+\frac{2}{b}\ge1+\frac{\left(\sqrt{2}+\sqrt{2}\right)^2}{a+b}=9\)
\(=>minS=9<=>a=b=\frac{1}{2}\)
( cái này dùng cosi hoặc bun đều đc vì a,b>0 nếu p để ý :P )