Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?
\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)
\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)
Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)
Áp dụng xuống dưới ta có:
\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)
Tìm GTLN ko phải tìm GTNN
Ta có: \(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}=1\) (*)
Lại có: \(\left(a+1\right)^2+b^2+1=a^2+b^2+2a+2\ge2ab+2a+2=2\left(ab+a+1\right)\)
\(\Rightarrow\frac{1}{\left(a+1\right)^2+b^2+1}\le\frac{1}{2\left(ab+a+1\right)}\) tương tự ta có:
\(\frac{1}{\left(b+1\right)^2+c^2+1}\le\frac{1}{2\left(bc+b+1\right)};\frac{1}{\left(c+1\right)^2+a^2+1}\le\frac{1}{2\left(ca+c+1\right)}\)
Cộng theo vế ta có: \(P\le\frac{1}{2\left(ab+a+1\right)}+\frac{1}{2\left(bc+b+1\right)}+\frac{1}{2\left(ca+c+1\right)}\)
\(=\frac{1}{2}\left(\frac{1}{ab+a+1}+\frac{1}{bc+b+1}+\frac{1}{ca+c+1}\right)=\frac{1}{2}\) theo (*)
Dấu "=" khi a=b=c=1
Bài 3: \(A=\frac{\left(2a+b+c\right)\left(a+2b+c\right)\left(a+b+2c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Đặt a+b=x;b+c=y;c+a=z
\(A=\frac{\left(x+y\right)\left(y+z\right)\left(z+x\right)}{xyz}\ge\frac{2\sqrt{xy}.2\sqrt{yz}.2\sqrt{zx}}{xyz}=\frac{8xyz}{xyz}=8\)
Dấu = xảy ra khi \(a=b=c=\frac{1}{3}\)
Bài 4: \(A=\frac{9x}{2-x}+\frac{2}{x}=\frac{9x-18}{2-x}+\frac{18}{2-x}+\frac{2}{x}\ge-9+\frac{\left(\sqrt{18}+\sqrt{2}\right)^2}{2-x+x}=-9+\frac{32}{2}=7\)
Dấu = xảy ra khi\(\frac{\sqrt{18}}{2-x}=\frac{\sqrt{2}}{x}\Rightarrow x=\frac{1}{2}\)
Cho e làm thử ạ:(
\(P=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
\(=\frac{a+b+c+ab+bc+ca+abc+1}{1-\left(a+b+c\right)+ab+bc+ca-abc}\)
\(=1+\frac{2\left(a+b+c\right)+2abc}{1-\left(a+b+c\right)+\left(ab+bc+ca\right)-abc}\)
\(=1+\frac{2+2abc}{ab+bc+ca-abc}\)
Đặt \(\left(a+b+c;ab+bc+ca;abc\right)\rightarrow\left(p,q,r\right)\)
Khi đó \(P=1+\frac{2+2r}{q-r}\)
Áp dụng \(3q\le p^2\Rightarrow q\le\frac{1}{3}\Rightarrow P\ge1+\frac{2+2r}{\frac{1}{3}-r}=1+\frac{6+6r}{1-3r}\)
Sau khi đưa P về 1 biến thì e tịt ngòi r ạ:( Đến đây thì đi kiểu nào cx ngược dấu:(
Ta có: \(a+b+c=1\); a, b , c > 0 => 0 < a; b; c <1
=> \(\hept{\begin{cases}1+a=\left(1-b\right)+\left(1-c\right)\ge2\sqrt{\left(1-b\right)\left(1-c\right)}\\1+b=\left(1-c\right)+\left(1-a\right)\ge2\sqrt{\left(1-c\right)\left(1-a\right)}\\1+c=\left(1-a\right)+\left(1-b\right)\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\end{cases}}\)
=> \(\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)
=> \(P\ge8\)
"=" xảy ra <=> a = b =c = 1/ 3
\(\left(\sqrt{a}+1\right)\left(\sqrt{b}+1\right)=4\Leftrightarrow\sqrt{ab}+\sqrt{a}+\sqrt{b}=3\)
\(\text{Ta có:}M\ge a+b\Rightarrow2M+2\ge a+b+a+1+b+1\ge2\left(\sqrt{ab}+\sqrt{a}+\sqrt{b}\right)\left(\text{theo cô si}\right)=6\)
\(\Rightarrow M\ge2\left(\text{dấu "=" xảy ra khi:}a=b=1\right)\)
Áp dụng BĐT AM - GM
\(A=\left(a+1\right)\left(1+\frac{1}{b}\right)+\left(b+1\right)\left(1+\frac{1}{a}\right)\)
\(=\frac{a}{b}+\frac{b}{a}+a+\frac{1}{a}+b+\frac{1}{b}+2\)
\(=\frac{a}{b}+\frac{b}{a}+\left(a+\frac{1}{2a}\right)+\left(b+\frac{1}{2b}\right)+\frac{1}{2a}+\frac{1}{2b}+2\)
\(\ge2\sqrt{\frac{a}{b}.\frac{b}{a}}+2\sqrt{a.\frac{1}{2a}}+2\sqrt{b.\frac{1}{2b}}+2\sqrt{\frac{1}{2a}.\frac{1}{2b}}+2\)
\(=4+2\sqrt{2}+\frac{1}{\sqrt{ab}}\ge4+2\sqrt{2}+\frac{1}{\frac{\sqrt{2\left(a^2+b^2\right)}}{2}}\)
\(=4+3\sqrt{2}\)
Dấu " = " xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Ta co:\(1=a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\Rightarrow a+b\le\sqrt{2}\)
Ta lai co:
\(A=\frac{a}{b}+\frac{b}{a}+\frac{1}{a}+\frac{1}{b}+a+b+2\)
\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{1}{a}+2a\right)+\left(\frac{1}{b}+2b\right)-\left(a+b\right)+2\)
\(\ge2+2\sqrt{2}+2\sqrt{2}-\sqrt{2}+2=4+3\sqrt{2}\)
Dau '=' xay ra khi \(a=b=\frac{1}{\sqrt{2}}\)
Vay \(A_{min}=4+3\sqrt{2}\)khi \(a=b=\frac{1}{\sqrt{2}}\)