\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 8 2020

\(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}\right)^2-\left(\frac{a}{b}+\frac{b}{a}\right)-2}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)}\)

\(=\frac{\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a}{b}+\frac{b}{a}-2}=\frac{\left(\frac{a-b}{ab}\right)^2}{\frac{a^2+b^2-2ab}{ab}}=\frac{\left(a-b\right)^2}{a^2b^2.\frac{\left(a-b\right)^2}{ab}}=\frac{1}{ab}\)

\(1=\sqrt{ab}+4a+b\ge\sqrt{ab}+2\sqrt{4ab}=5\sqrt{ab}\)

\(\Rightarrow\sqrt{ab}\le\frac{1}{5}\Rightarrow ab\le\frac{1}{25}\Rightarrow\frac{1}{ab}\ge25\)

\(\Rightarrow P_{min}=25\) khi \(\left\{{}\begin{matrix}a=\frac{1}{10}\\b=\frac{2}{5}\end{matrix}\right.\)

10 tháng 2 2019

\(P=\frac{\frac{a^2+b^2+ab}{ab}.\frac{a^2-2ab+b^2}{a^2b^2}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)

\(=\frac{\frac{a^4-2a^3b+a^2b^2+a^2b^2-2ab^3+b^4+a^3b-2a^2b^2+ab^3}{a^3b^3}}{\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}}\)

\(=\frac{a^4+b^4-a^3b-ab^3}{a^3b^3}:\frac{a^4+b^4-a^3b-ab^3}{a^2b^2}=\frac{1}{ab}\)

NV
11 tháng 2 2020

Hình như bạn viết nhầm đề, làm gì có số 9 ở đầu?

\(\frac{1}{1+a}+\frac{1}{1+b}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+b\right)}}\)

\(\frac{a}{1+a}+\frac{b}{1+b}\ge2\sqrt{\frac{ab}{\left(1+a\right)\left(1+b\right)}}\)

Cộng vế với vế: \(1\ge\frac{1+\sqrt{ab}}{\sqrt{\left(1+a\right)\left(1+b\right)}}\Leftrightarrow\left(1+a\right)\left(1+b\right)\ge\left(1+\sqrt{ab}\right)^2\)

Áp dụng xuống dưới ta có:

\(M\ge\left(1+\sqrt{b}\right)^2\left(1+\frac{4}{\sqrt{b}}\right)^2=\left(5+\frac{4}{\sqrt{b}}+\sqrt{b}\right)^2\ge\left(5+2\sqrt{\frac{4\sqrt{b}}{\sqrt{b}}}\right)^2=81\)

Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}b=4\\a=2\end{matrix}\right.\)

11 tháng 2 2020

mình vt nhầm số 9

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

19 tháng 5 2017

ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho

9 tháng 8 2020

gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)

=> Thay vào thì     \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)

\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)

Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào

=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)

=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)

=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\) 

23 tháng 3 2021

Bài 1

*Chứng minh bằng AM-GM

Áp dụng bất đẳng thức AM-GM ta có :

\(\hept{\begin{cases}a+b+c\ge3\sqrt[3]{abc}\\\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\end{cases}\Rightarrow}\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\sqrt[3]{abc\cdot\frac{1}{abc}}=9\)

Vậy ta có đpcm

Đẳng thức xảy ra <=> a=b=c

23 tháng 3 2021

Bài 1

*Chứng minh bằng Cauchy-Schwarz

Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{\left(1+1+1\right)^2}{a+b+c}=\frac{9}{a+b+c}\)

=> \(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge\left(a+b+c\right)\cdot\frac{9}{a+b+c}=9\left(đpcm\right)\)

Đẳng thức xảy ra <=> a=b=c