K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
D
1
AH
Akai Haruma
Giáo viên
11 tháng 7 2021
Lời giải:
\(\text{VT}=\sum \frac{a^2}{a+2b^3}=\sum (a-\frac{2ab^3}{a+2b^3})=3-2\sum \frac{ab^3}{a+2b^3}\)
Áp dụng BĐT AM-GM:
\(\sum \frac{ab^3}{a+2b^3}\leq \sum \frac{ab^3}{3\sqrt[3]{ab^6}}=\frac{1}{3}\sum \sqrt[3]{a^2}\leq \frac{1}{3}\sum \frac{a+a+1}{3}=\frac{1}{9}[2(a+b+c)+3]=1\)
$\Rightarrow \text{VT}\geq 3-2.1=1$. Ta có đpcm.
Dấu "=" xảy ra khi $a=b=c=1$
11 tháng 7 2021
Mình làm được rồi, nhưng dù sao cũng cảm ơn bạn đã trả lời :)
HT
1
BB
0
HV
2