Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đường thẳng a chia mặt phẳng thành 2 nửa mặt phẳng.
Xét các trường hợp :
TH1 : Nếu 4 điểm A,B,C,D cùng thuộc 1 nửa mặt phẳng thì đoạn thẳng a không cắt đoạn thẳng nào.
TH2 : Nếu có 1 điểm (chẳng hạn điểm A thuộc nửa mặt phẳng) thì ba điểm B,C,D thuộc nửa mặt phẳng đối của điểm A thì hì đường thẳng a cắt ba đoạn thẳng AB, AC, AD
TH3 : Nếu có 2 điểm chẳng hạn (A và B) thuộc một nửa mặt phẳng hai điểm kia (C và D) thuộc mỗi mặt phẳng đối thì a cắt bốn đoạn thẳng AC, AD, BC, BD
=>điều phải chứng tỏ.
a). Nếu cả 4 điểm A, B, CD thuộc cùng một nửa mặt phẳng thì a không cắt đoạn thẳng nào.
b). Nếu có 1 điểm ( Chẳng hạn điểm A thuộc nửa mặt phẳng) ba điểm B, C, D thuộc nửa mặt phẳng đối thì đường thẳng a cắt ba đoạn thẳng AB, AC, AD
c). Nếu có 2 điểm chẳng hạn (A và B) thuộc một nửa mặt phẳng hai điểm kia (C và D) thuộc mỗi mặt phẳng đối thì a cắt bốn đoạn thẳng AC, AD, BC, BD
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}<\frac{1}{2.3}\)
\(...\)
\(\frac{1}{2001!}<\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2000.2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2000}-\frac{1}{2001}\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1-\frac{1}{2001}=\frac{2000}{2001}<1\)
\(\Rightarrow\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<1\)
\(\Rightarrow\left(\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\right)+2<1+2\)
\(\Rightarrow1+\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}<3\)
a)
56a + 21b - 35c
= 7 ( 8a + 3b - 5c ) chia hết cho 7
=> đpcm
- Ta có: A âm khi a, b hoặc c âm hoặc cả a, b, c đều âm.
Mà \(B=ab^5;C=2c^7\)
B và C không có số trùng nhau nên nếu B âm thì C dương và ngược lại.
- Ta có: A dương khi 2 số a, b, hoặc c âm hoặc cả 3 số a, b, c đều dương.
Cũng tương tự: nếu B âm thì C dương và ngược lại.
Vậy A, B, C không thể cùng âm