Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Theo nguyên lí Dirichlet, trong ba số \(a^2-1;b^2-1;c^2-1\) có ít nhất hai số nằm cùng phía với 1.
Giả sử đó là a2 - 1 và b2 - 1. Khi đó \(\left(a^2-1\right)\left(b^2-1\right)\ge0\Leftrightarrow a^2b^2-a^2-b^2+1\ge0\)
\(\Rightarrow a^2b^2+3a^2+3b^2+9\ge4a^2+4b^2+8\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\ge4\left(a^2+b^2+2\right)\)
\(\Rightarrow\left(a^2+3\right)\left(b^2+3\right)\left(c^2+3\right)\ge4\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\) (2)
Mà \(4\left[\left(a^2+b^2+1+1\right)\left(1+1+c^2+1\right)\right]\ge4\left(a+b+c+1\right)^2\) (3)(Áp dụng Bunhicopxki và cái ngoặc vuông)
Từ (2) và (3) ta có đpcm.
Sai thì chịu
Xí quên bài 2 b:v
b) Không mất tính tổng quát, giả sử \(\left(a^2-\frac{1}{4}\right)\left(b^2-\frac{1}{4}\right)\ge0\)
Suy ra \(a^2b^2-\frac{1}{4}a^2-\frac{1}{4}b^2+\frac{1}{16}\ge0\)
\(\Rightarrow a^2b^2+a^2+b^2+1\ge\frac{5}{4}a^2+\frac{5}{4}b^2+\frac{15}{16}\)
Hay \(\left(a^2+1\right)\left(b^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{3}{4}\right)\)
Suy ra \(\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)\ge\frac{5}{4}\left(a^2+b^2+\frac{1}{4}+\frac{1}{2}\right)\left(\frac{1}{4}+\frac{1}{4}+c^2+\frac{1}{2}\right)\)
\(\ge\frac{5}{4}\left(\frac{1}{2}a+\frac{1}{2}b+\frac{1}{2}c+\frac{1}{2}\right)^2=\frac{5}{16}\left(a+b+c+1\right)^2\) (Bunhiacopxki) (đpcm)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)
Bn thiếu đề nhé : \(DK:abc=1\)
Áp dụng BĐT Cauchy-Schwarz ta có :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{\left(1+b\right)\left(1+c\right)}.\frac{1+b}{8}.\frac{1+c}{8}}=\frac{3}{4}a\)
Tương tự \(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3}{4}b\)
Và .\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)
Cộng vế với vế của các bđt trên ta được :
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}+\frac{1}{4}\left(a+b+c\right)+\frac{3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Leftrightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{b^3}{\left(1+a\right)\left(1+c\right)}+\frac{c^3}{\left(1+b\right)\left(1+a\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}.3\sqrt[3]{abc}-\frac{3}{4}\ge\frac{3}{2}-\frac{3}{4}=\frac{3}{4}\) (ĐPCM)
Ta có:\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow a^3+3a^2b+3ab^2+b^3+c^3-3a^2b-3ab^2-3abc=0\)
\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right).c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(\Rightarrow\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a+b+c=0\left(loai\right)\\a=b=c\end{cases}}\)
\(\Rightarrow P=2007.2007.2007=2007^3\)
a3 + b3 + c3 = 3abc
=> a3 + b3 +3a2b+ 3ab2 +c3-3abc-3a2b-3ab2=0
=>((a+b)3+c3)-3ab(a+b+c)=0
=>(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=0
=>(a+b+c)(a2+2ab+b2-ac-bc+c2-3ab)=0
=>(a+b+c)(a2+b2+c2-ab-ac-bc)=0
*)TH1: a+b+c=0
=> c=-(a+b)
b=-(a+c)
a=-(b+c)
=>M=\(\left(1-\frac{b+c}{b}\right)\left(1-\frac{a+c}{c}\right)\left(1-\frac{a+b}{a}\right)\)
=>M=\(\left(-\frac{c}{b}\right)\left(-\frac{a}{c}\right)\left(-\frac{b}{a}\right)\)=-1
*)TH2: a2+b2+c2-ac-bc-ab=0
=>2(a2+b2+c2-ac-bc-ab)=0
=>2a2+2b2+2c2-2ac-2bc-2ab=0
=>(a-b)2+(b-c)2+(c-a)2=0
=>a=b=c
=>M=8
Vậy M=8 hoặc M =-1
chọn đúng giúp mình!
\(a^3+b^3+c^3-3abc=0\Leftrightarrow a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ab-ac+c^2\right)-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)
TH1: \(a+b+c=0\Rightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)
\(\Rightarrow P=\frac{\left(a+b\right)\left(a+c\right)\left(b+c\right)}{abc}=\frac{\left(-c\right)\left(-b\right)\left(-a\right)}{abc}=-1\)
TH2: \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)
b/ \(\frac{1}{xy}+\frac{1}{xz}+\frac{1}{yz}+9.xyz=1\Leftrightarrow x+y+z+9=xyz\)
Không mất tính tổng quát, giả sử \(x\le y\le z\)
Nếu \(z< 3\Rightarrow VP\le8< 9< VT\Rightarrow ptvn\) \(\Rightarrow z\ge3\)
\(\Rightarrow x+y+z+9\le3z+9\le3\left(z+3\right)\le6z\Rightarrow xyz\le6z\)
\(\Rightarrow xy\le6\Rightarrow\left(x;y\right)=\left(1;1\right);\left(1;2\right);\left(1;3\right);\left(1;4\right);\left(1;5\right);\left(1;6\right);\left(2;3\right)\)
- Nếu \(\left(x;y\right)=\left(1;1\right)\Rightarrow z+11=z\left(l\right)\)
- Nếu \(\left(x;y\right)=\left(1;2\right)\Rightarrow z+12=2z\Rightarrow z=12\)
- Nếu \(\left(x;y\right)=\left(1;3\right)\Rightarrow z+13=3z\left(l\right)\)
- Nếu ....
Theo bđt AM-GM :
\(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b+1}{8}+\frac{c+1}{8}\)\(\ge3\sqrt[3]{\frac{a^3}{\left(b+1\right)\left(c+1\right)}\cdot\frac{b+1}{8}\cdot\frac{c+1}{8}}=\frac{3a}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}=\frac{b+1}{8}=\frac{c+1}{8}\)
\(\Leftrightarrow2a=b+1=c+1\)
+ Tương tự ta cm đc :
\(\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c+1}{8}+\frac{a+1}{8}\ge\frac{3b}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow2a=b+1=c+1\)
\(\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+1}{8}+\frac{c+1}{8}\ge\frac{3c}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow2a=a+1=b+1\)
Do đó : \(\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}+\frac{a+b+c+3}{4}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow\frac{a^3}{\left(b+1\right)\left(c+1\right)}+\frac{b^3}{\left(c+1\right)\left(a+1\right)}+\frac{c^3}{\left(a+1\right)\left(b+1\right)}\ge\frac{1}{2}\left(a+b+c\right)-\frac{3}{4}\)
\(\ge\frac{1}{2}\cdot3\sqrt[3]{abc}-\frac{3}{4}=\frac{3}{4}\)
Dấu "=" xảy ra <=> a = b = c = 1
Áp dụng bđt AM-GM
\(\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge\frac{3}{4}a\)
\(\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+b}{8}\ge\frac{3}{4}b\)
\(\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3}{4}c\)
\(\Rightarrow A+\frac{6+2a+2b+2c}{8}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow A+\frac{3}{4}\ge\frac{1}{2}\left(a+b+c\right)\ge\frac{3}{2}\sqrt[3]{abc}=\frac{3}{2}\)
\(\Rightarrow A\ge\frac{3}{4}\)
\("="\Leftrightarrow a=b=c=1\)
Đặt P = 1/a³(b + c) + 1/b³(a + c) +1/c³(a + b)
= bc/a²(b + c) + ac/b²(a + c) + ab/c²(a + b) ------- (do abc = 1)
= 1 / a²[(1/c) + (1/b)] + 1 / b²[(1/c) + (1/a)] + 1 / c²[(1/b) + (1/a)]
= (1/a²) / [(1/c) + (1/b)] + (1/b²) / [(1/c) + (1/a)] + (1/c²) / [(1/b) + (1/a)]
Đặt 1/a = x, 1/b = y, 1/c = z thì xyz = 1
Và khi đó:
P = x²/(y + z) + y²/(z + x) + z²/(x + y)
Sử dụng BĐT Cauchy:
♠ x²/(y + z) + (y + z)/4 ≥ x
♠ y²/(z + x) + (z + x)/4 ≥ y
♠ z²/(x + y) + (x + y)/4 ≥ z
Cộng vế 3 BĐT trên ta được
P + (x + y + z)/2 ≥ x + y + z
Hay:
P ≥ (x + y + z)/2
Lại theo Cauchy thì x + y + z ≥ 3.³√(xyz) = 3
Nên P ≥ 3/2 (và ta được đpcm)
https://olm.vn/hoi-dap/question/1036432.html
vào đây xem nhé,cách ngắn hơn
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\frac{a^3}{\left(1+b\right)\left(1+c\right)}+\frac{1+b}{8}+\frac{1+c}{8}\ge3\sqrt[3]{\frac{a^3}{64}}=\frac{3a}{4}\)
Tượng tự ta có \(\hept{\begin{cases}\frac{b^3}{\left(1+c\right)\left(1+a\right)}+\frac{1+c}{8}+\frac{1+a}{8}\ge\frac{3b}{4}\\\frac{c^3}{\left(1+a\right)\left(1+b\right)}+\frac{1+a}{8}+\frac{1+b}{8}\ge\frac{3c}{4}\end{cases}}\)
\(\Rightarrow VT+\frac{3}{4}+\frac{a+b+c}{4}\ge\frac{3\left(a+b+c\right)}{4}\)
\(\Rightarrow VT\ge\frac{a+b+c}{2}-\frac{3}{4}\)(1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow a+b+c\ge3\sqrt[3]{abc}=3\)
\(\Rightarrow\frac{a+b+c}{2}-\frac{3}{4}\ge\frac{3}{4}\)(2)
Từ (1) và (2)
\(\Rightarrow VT\ge\frac{3}{4}\)( đpcm )
Dấu " = " xảy ra khi \(a=b=c=1\)
Tham khảo:
Ta có
a^3 + b^3 + c^3 = 3abc
<=> a^3 + b^3 + c^3 - 3abc = 0
<=> (a + b)^3 + c^3 - 3ab(a + b) - 3abc = 0
<=> (a + b + c)^3 - 3c(a + b)(a + b + c) - 3ab(a + b + c) = 0
<=> (a + b + c)^3 - 3(a + b + c)(ab + bc + ca) = 0
<=> (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca) = 0
<=> a + b + c = 0 hoặc a^2 + b^2 + c^2 - ab - bc - ca = 0
(+) a + b + c = 0
=> A = (1 + a/b)(1+ b/c)(1 + c/a) = (a + b)(b + c)(c + a)/abc = -abc/abc = -1
(+) a^2 + b^2 + c^2 - ab - bc - ca = 0
<=> 1/2.[(a - b)^2 + (b - c)^2 + (c - a)^2] = 0
<=> a - b = b - c = c - a = 0
<=> a = b = c
=> A = (1 + 1)(1 + 1)(1 + 1) = 2.2.2 = 8
Theo bất đẳng thức Cô - si , ta có :
\(a^3+b^3+c^3\Rightarrow3.\sqrt{3}\left(a^3.b^3.c^3\right)\)
Dấu bằng xảy ra khi \(a=b=c\)
\(\Rightarrow3a^3=3abc\)
\(\Rightarrow a^3=abc\Rightarrow a^2=bc\Rightarrow\frac{a}{b}=\frac{c}{a}\)
\(3b^3=3abc\Rightarrow b^3=abc=b^2=ac=\frac{b}{c}=\frac{a}{b}=2.2.2\Rightarrow P=8\)