K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2017

1)

a) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{28}+3^{29}+3^{30}\)

\(\Leftrightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)

\(\Leftrightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+....+3^{28}\left(1+3+3^2\right)\)

\(\Leftrightarrow A=3.13+3^4.13+....+3^{28}.13\)

\(\Leftrightarrow A=13\left(3+3^4+....+3^{28}\right)⋮13\left(dpcm\right)\)

b) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\)

\(\Leftrightarrow A=\left(3+3^2+3^3+3^4+3^5+3^6\right)+....+\left(3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\right)\)

\(\Leftrightarrow A=3\left(1+3+3^2+3^3+3^4+3^5\right)+....+3^{25}\left(1+3+3^2+3^3+3^4+3^5\right)\)

\(\Leftrightarrow A=3.364+....+3^{25}.364\)

\(\Leftrightarrow A=364\left(3+3^5+3^{10}+....+3^{25}\right)\)

\(\Leftrightarrow A=52.7\left(3+3^5+3^{10}+....+3^{25}\right)⋮52\left(dpcm\right)\)

28 tháng 11 2017

2) \(A=3+3^2+3^3+....+3^{30}\)

\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{30}+3^{31}\)

\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+....+3^{30}+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)

\(\Leftrightarrow2A=3^{31}-3\)

\(\Leftrightarrow A=\dfrac{3^{31}-3}{2}\)

Vậy A không phải là số chính phương

9 tháng 11 2023

1)

a) �=3+32+33+34+35+36+....+328+329+330

⇔�=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔�=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔�=3.13+34.13+....+328.13

⇔�=13(3+34+....+328)⋮13(����)

b) �=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔�=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔�=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔�=3.364+....+325.364

⇔�=364(3+35+310+....+325)

 

2) �=3+32+33+....+330

⇔3�=3(3+32+33+....+330)

⇔3�=32+33+34+....+330+331

⇔3�−�=(32+33+34+....+330+331)−(3+32+33+....+330)

⇔2�=331−3

⇔�=331−32

Vậy A không phải là số chính phương
Học tốt nha

26 tháng 12 2022

a) A=3+32+33+34+35+36+....+328+329+330

⇔A=(3+32+33)+(34+35+36)+....+(328+329+330)

⇔A=3(1+3+32)+34(1+3+32)+....+328(1+3+32)

⇔A=3.13+34.13+....+328.13

⇔A=13(3+34+....+328)⋮13(dpcm)

b) A=3+32+33+34+35+36+....+325+326+327+328+329+330

⇔A=(3+32+33+34+35+36)+....+(325+326+327+328+329+330)

⇔A=3(1+3+32+33+34+35)+....+325(1+3+32+33+34+35)

⇔A=3.364+....+325.364

⇔A=364(3+35+310+....+325)

 

 

15 tháng 12 2017

A=3+32+....+330
A=(3+32+33)+(34+35+36)+...+(328+329+330)
A=3(1+3+9)+34(1+3+9)+.....+328(1+3+9)
A=3.13+34.13+......+328.13
A=13(3+34+.....+328)
=> A chia hết cho 13
Mình chỉ biết làm như thế thôi à bạn (nhưng nếu bạn thay số 52 thành 40 thì mình làm đc)
Mình không biết làm câu b nha...
KB với mình chứ?

10 tháng 12 2017

Mọi người ơi giúp mình với. Mình đang cần gấp 

25 tháng 8 2017

a25/27 15/16

25 tháng 8 2017

1)      a3 + b3 + c3 – 3abc

Ta sẽ thêm và bớt  3a2b +3ab2  sau đó nhóm để phân tích tiếp

           a3 + b3 + c3 = (a3 + 3a2b +3ab2 + b3) + c3 – (3a2b +3ab2 + 3abc)

                            = (a + b)3 +c3 – 3ab(a + b + c)

                            = (a + b + c)[(a + b)2 – (a + b)c + c2 – 3ab]

                            = (a + b + c)(a2 + 2ab + b2 – ac – bc + c2 – 3ab]

                            = (a + b + c)(a2 + b2 + c2 – ab – ac – bc)

2)      x– 1     

Ta sẽ thêm và bớt x sau đó dùng phương pháp nhóm: 

           x5  – 1   = x5 – x + x – 1

                        = (x5 – x) + (x – 1)

                        = x(x4 – 1) + ( x – 1)

                       = x(x2 – 1)(x2 + 1) + (x - 1)

                       = x(x +1)(x – 1)(x2 + 1) + (  x – 1)

                       = (x – 1)[x(x + 1)(x2 + 1) + 1].

3)      4x+ 81 

Ta sẽ thêm và bớt 36x2 sau đó nhóm các hạng tử phù hợp để có dạng hằng đẳng thức:

          4x+ 81  =  4x + 36x2 + 81 – 36x2

                        = ( 2x+ 9)2 – (6x)2

                        =  (2x2 + 9 – 6x)(2x2 + 9 + 6x)

15 tháng 2 2016

Ta có:

Ư(13)={1;13}

29 tháng 8 2018

Tính 3A, sau đó trừ A

29 tháng 8 2018

a. Ta có 3A= 3+3^2+...+3^31

Vậy 3A-A=2A= 3-1-3 +3^31=> A=\(\frac{3^{31}-1}{2}\)

b. A=(3.3^30-1)/2= (3.27^10-1)/2= [3.(27^2)^5-1]/2 = \(\frac{3x729^5-1}{2}\)

Ta co \(729^5\) có số cuối là 9 => 3.\(729^5\)có số cuối là 7, -1 đi có số cuối là 6, chia 2 có số cuối là 3

Vậy A có số cuối là 3 => A không thể là 1 số chính phương

c. A-1= 3+ 3^2+3^3+3^4+3^5+3^6+....+3^25+3^26+3^27+3^28+3^29+3^30 

(Từ 3 đến 3^30 có 30 số, chia làm 6 nhóm)

=3(1+3+9+27+81+243) + 3^6 (1+3+..+243) +....+ 3^24(1+3+...+243)

=364 (3+3^6+...+3^24) Ta có 364 chia hết 7 vậy (A-1) chia hết 7