Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
1) \(P=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}\)
\(5P=\frac{1}{5^1}+\frac{2}{5^2}+\frac{3}{5^3}+...+\frac{11}{5^{11}}\)
\(5P-P=\frac{1}{5^1}+\left(\frac{2}{5^2}-\frac{1}{5^2}\right)+\left(\frac{3}{5^3}-\frac{2}{5^3}\right)+...+\left(\frac{11}{5^{11}}-\frac{10}{5^{11}}\right)-\frac{11}{5^{12}}\)
\(4P=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
Đặt \(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{11}}\)
\(5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{10}}\)
\(5A-A=1+\frac{1}{5}-\frac{1}{5}+\frac{1}{5^2}-\frac{1}{5^2}+...+\frac{1}{5^{10}}-\frac{1}{5^{11}}\)
\(4A=1-\frac{1}{5^{11}}\Rightarrow A=\frac{1-\frac{1}{5^{11}}}{4}\)
\(4P=\frac{1-\frac{1}{5^{11}}}{4}-\frac{11}{5^{12}}=\frac{1-\frac{1}{5^{11}}}{16}-\frac{11}{5^{12}\cdot4}< \frac{1}{16}\)
2c )
Áp dụng bất đẳng thức \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Rightarrow\left|x+x-1\right|\le\left|x\right|+\left|x-1\right|\)
\(\Rightarrow\left|2x-1\right|\le1\)
\(\Rightarrow\left[{}\begin{matrix}2x-1\le1\\2x-1\le-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\le0\end{matrix}\right.\)
Dấu bằng xảy ra khi \(\text{x =1 , x= 0}\)
2/c
Áp dụng bất đẳng thức \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Rightarrow\left|x+x-1\right|\le\left|x\right|+\left|x-1\right|\)
\(\Rightarrow\left|2x-1\right|\le1\)
\(\Rightarrow\left[{}\begin{matrix}2x-1\le1\\2x-1\le-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\le0\end{matrix}\right.\)
Dấu bằng xảy ra khi \(\text{x =1 , x= 0}\)
Ta có:\(n^2-3⋮n+3\)
\(\Leftrightarrow n^2+3n-3n-9+6⋮n+3\)
\(\Leftrightarrow\left(n^2+3n\right)-\left(3n+9\right)+6⋮n+3\)
\(\Leftrightarrow n\left(n+3\right)-3\left(n+3\right)+6⋮n+3\)
\(\Leftrightarrow6⋮n+3\)
\(\Leftrightarrow n+3\inƯ\left(6\right)\)
Mà \(n\in N\)*\(\Rightarrow n+3\ge4\)
\(\Leftrightarrow n+3=6\)
\(\Leftrightarrow n=3\)
\(n^2-3⋮n+3\\ \Rightarrow\left(n-3\right)\left(n+3\right)+6⋮n+3\\ \Rightarrow6⋮n+3\Rightarrow n+3\in\text{Ư}\left(6\right)\)
Tới đây dễ rồi nha!
a)\(10^{2k}-1=\left(10^k-1\right)\left(10^k+1\right)\)
Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+1\right)⋮19\)
\(\Rightarrow10^{2k}-1⋮19\)
b)\(10^{3k}-1=\left(10^k-1\right)\left(10^k+10^{2k}+1\right)\)
Dễ thấy: \(10^k-1⋮19\Rightarrow\left(10^k-1\right)\left(10^k+10^{2k}+1\right)⋮19\)
\(\Rightarrow10^{3k}-1⋮19\)
Thắng xem mà học tập đây :v
Vì 10k - 1 \(⋮\) 19 => 10k - 1\(\equiv\) 0 (mod 19)
=> 10k \(\equiv\) 1 (mod 19)
a) 10k \(\equiv\) 1 (mod 19)
=> (10k)2 \(\equiv\) 12 (mod 19)
=> 102k \(\equiv\) 1 (mod 19)
=> 102k - 1 \(⋮\) 19
b) 10k \(\equiv\) 1 (mod 19)
=> (10k)3 \(\equiv\) 13 (mod 19)
=> 103k = 1 (mod 19)
=> 103k - 1 \(⋮\) 19
a
A=1+3+3²+...+3^30
3A=3(1+3+3²+...+3^30)
3A=3+3²+3^3+...+3^31
3A-A=3^31-1
=>A=3^31-1
1)
a) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{28}+3^{29}+3^{30}\)
\(\Leftrightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)
\(\Leftrightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+....+3^{28}\left(1+3+3^2\right)\)
\(\Leftrightarrow A=3.13+3^4.13+....+3^{28}.13\)
\(\Leftrightarrow A=13\left(3+3^4+....+3^{28}\right)⋮13\left(dpcm\right)\)
b) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\)
\(\Leftrightarrow A=\left(3+3^2+3^3+3^4+3^5+3^6\right)+....+\left(3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\right)\)
\(\Leftrightarrow A=3\left(1+3+3^2+3^3+3^4+3^5\right)+....+3^{25}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(\Leftrightarrow A=3.364+....+3^{25}.364\)
\(\Leftrightarrow A=364\left(3+3^5+3^{10}+....+3^{25}\right)\)
\(\Leftrightarrow A=52.7\left(3+3^5+3^{10}+....+3^{25}\right)⋮52\left(dpcm\right)\)
2) \(A=3+3^2+3^3+....+3^{30}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{30}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{30}+3^{31}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+....+3^{30}+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)
\(\Leftrightarrow2A=3^{31}-3\)
\(\Leftrightarrow A=\dfrac{3^{31}-3}{2}\)
Vậy A không phải là số chính phương