Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a)
\(\dfrac{x-1}{9}=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{x-1}{9}=\dfrac{24}{9}\\ \Leftrightarrow x-1=24\\ x=24+1\\ x=25\)
b)
\(\left(\dfrac{3x}{7}+1\right):\left(-4\right)=\dfrac{-1}{8}\\ \dfrac{3x}{7}+1=\dfrac{-1}{8}\cdot\left(-4\right)\\ \dfrac{3x}{7}+1=\dfrac{1}{2}\\ \dfrac{3x}{7}=\dfrac{1}{2}-1\\ \dfrac{3x}{7}=\dfrac{-1}{2}\\ 3x=\dfrac{-1}{2}\cdot7\\ 3x=\dfrac{-7}{2}\\ x=\dfrac{-7}{2}:3\\ x=\dfrac{-7}{6}\)
c)
\(x+\dfrac{7}{12}=\dfrac{17}{18}-\dfrac{1}{9}\\ x+\dfrac{7}{12}=\dfrac{5}{6}\\ x=\dfrac{5}{6}-\dfrac{7}{12}\\ x=\dfrac{1}{4}\)
d)
\(0,5x-\dfrac{2}{3}x=\dfrac{7}{12}\\ \dfrac{1}{2}x-\dfrac{2}{3}x=\dfrac{7}{12}\\ x\cdot\left(\dfrac{1}{2}-\dfrac{2}{3}\right)=\dfrac{7}{12}\\ \dfrac{-1}{6}x=\dfrac{7}{12}\\ x=\dfrac{7}{12}:\dfrac{-1}{6}\\ x=\dfrac{-7}{2}\)
e)
\(\dfrac{29}{30}-\left(\dfrac{13}{23}+x\right)=\dfrac{7}{46}\\ \dfrac{29}{30}-\dfrac{13}{23}-x=\dfrac{7}{46}\\ \dfrac{277}{690}-x=\dfrac{7}{46}\\ x=\dfrac{277}{690}-\dfrac{7}{46}\\ x=\dfrac{86}{345}\)
f)
\(\left(x+\dfrac{1}{4}-\dfrac{1}{3}\right):\left(2+\dfrac{1}{6}-\dfrac{1}{4}\right)=\dfrac{7}{46}\\ \left(x-\dfrac{1}{12}\right):\dfrac{23}{12}=\dfrac{7}{46}\\ x-\dfrac{1}{12}=\dfrac{7}{46}\cdot\dfrac{23}{12}\\ x-\dfrac{1}{12}=\dfrac{7}{24}\\ x=\dfrac{7}{24}+\dfrac{1}{12}\\ x=\dfrac{3}{8}\)
g)
\(\dfrac{13}{15}-\left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{13}{15}-\dfrac{7}{10}\\ \left(\dfrac{13}{21}+x\right)\cdot\dfrac{7}{12}=\dfrac{1}{6}\\ \dfrac{13}{21}+x=\dfrac{1}{6}:\dfrac{7}{12}\\ \dfrac{13}{21}+x=\dfrac{2}{7}\\ x=\dfrac{2}{7}-\dfrac{13}{21}\\ x=\dfrac{-1}{3}\)
h)
\(2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|-\dfrac{3}{2}=\dfrac{1}{4}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{1}{4}+\dfrac{3}{2}\\ 2\cdot\left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{4}:2\\ \left|\dfrac{1}{2}x-\dfrac{1}{3}\right|=\dfrac{7}{8}\Rightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\end{matrix}\right.\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{7}{8}\\ \dfrac{1}{2}x=\dfrac{7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{29}{24}\\ x=\dfrac{29}{24}:\dfrac{1}{2}\\ x=\dfrac{29}{12}\\ \dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{-7}{8}\\ \dfrac{1}{2}x=\dfrac{-7}{8}+\dfrac{1}{3}\\ \dfrac{1}{2}x=\dfrac{-13}{24}\\ x=\dfrac{-13}{24}:\dfrac{1}{2}\\ x=\dfrac{-13}{12}\)
i)
\(3\cdot\left(3x-\dfrac{1}{2}\right)^3+\dfrac{1}{9}=0\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=0-\dfrac{1}{9}\\ 3\cdot\left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{9}:3\\ \left(3x-\dfrac{1}{2}\right)^3=\dfrac{-1}{27}\\ \left(3x-\dfrac{1}{2}\right)^3=\left(\dfrac{-1}{3}\right)^3\\ \Leftrightarrow3x-\dfrac{1}{2}=\dfrac{-1}{3}\\ 3x=\dfrac{-1}{3}+\dfrac{1}{2}\\ 3x=\dfrac{1}{6}\\ x=\dfrac{1}{6}:3\\ x=\dfrac{1}{18}\)
\(a,n+6⋮n\)
\(\Rightarrow6⋮n\)
\(\Rightarrow n\inƯ\left(6\right)\)
\(\Rightarrow n\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(b,n+9⋮n+1\)
\(\Rightarrow n+1+8⋮n+1\)
\(\Rightarrow8⋮n+1\)
\(\Rightarrow n+1\inƯ\left(8\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-4;4;-8;8\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;1;-5;3;-9;7\right\}\)
\(c,n-5⋮n+1\)
\(\Rightarrow n+1-6⋮n+1\)
\(\Rightarrow6⋮n+1\)
\(\Rightarrow n+1\inƯ\left(6\right)\)
\(\Rightarrow n+1\in\left\{-1;1;-2;2;-3;3;-6;6\right\}\)
\(\Rightarrow n\in\left\{-2;0;-3;0;-4;2;-7;5\right\}\)
\(d,2n+7⋮n-2\)
\(\Rightarrow2n-4+11⋮n-2\)
\(\Rightarrow2\left(n-2\right)+11⋮n-2\)
\(\Rightarrow11⋮n-2\)
\(\Rightarrow n-2\inƯ\left(11\right)\)
\(\Rightarrow n-2\in\left\{-1;1;-11;11\right\}\)
\(\Rightarrow n\in\left\{1;3;-9;13\right\}\)
-8 chia hết cho x và 12 chia hết cho x
-8\(⋮\)x và 12 \(⋮\)x
=>x\(\in\)ƯC(-8,12)={\(\pm\)1;\(\pm\)2;\(\pm\)4}
Chúc bn học tốt
1)
a) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{28}+3^{29}+3^{30}\)
\(\Leftrightarrow A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+....+\left(3^{28}+3^{29}+3^{30}\right)\)
\(\Leftrightarrow A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+....+3^{28}\left(1+3+3^2\right)\)
\(\Leftrightarrow A=3.13+3^4.13+....+3^{28}.13\)
\(\Leftrightarrow A=13\left(3+3^4+....+3^{28}\right)⋮13\left(dpcm\right)\)
b) \(A=3+3^2+3^3+3^4+3^5+3^6+....+3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\)
\(\Leftrightarrow A=\left(3+3^2+3^3+3^4+3^5+3^6\right)+....+\left(3^{25}+3^{26}+3^{27}+3^{28}+3^{29}+3^{30}\right)\)
\(\Leftrightarrow A=3\left(1+3+3^2+3^3+3^4+3^5\right)+....+3^{25}\left(1+3+3^2+3^3+3^4+3^5\right)\)
\(\Leftrightarrow A=3.364+....+3^{25}.364\)
\(\Leftrightarrow A=364\left(3+3^5+3^{10}+....+3^{25}\right)\)
\(\Leftrightarrow A=52.7\left(3+3^5+3^{10}+....+3^{25}\right)⋮52\left(dpcm\right)\)
2) \(A=3+3^2+3^3+....+3^{30}\)
\(\Leftrightarrow3A=3\left(3+3^2+3^3+....+3^{30}\right)\)
\(\Leftrightarrow3A=3^2+3^3+3^4+....+3^{30}+3^{31}\)
\(\Leftrightarrow3A-A=\left(3^2+3^3+3^4+....+3^{30}+3^{31}\right)-\left(3+3^2+3^3+....+3^{30}\right)\)
\(\Leftrightarrow2A=3^{31}-3\)
\(\Leftrightarrow A=\dfrac{3^{31}-3}{2}\)
Vậy A không phải là số chính phương
2c )
Áp dụng bất đẳng thức \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Rightarrow\left|x+x-1\right|\le\left|x\right|+\left|x-1\right|\)
\(\Rightarrow\left|2x-1\right|\le1\)
\(\Rightarrow\left[{}\begin{matrix}2x-1\le1\\2x-1\le-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\le0\end{matrix}\right.\)
Dấu bằng xảy ra khi \(\text{x =1 , x= 0}\)
2/c
Áp dụng bất đẳng thức \(\left|a+b\right|\le\left|a\right|+\left|b\right|\)
\(\Rightarrow\left|x+x-1\right|\le\left|x\right|+\left|x-1\right|\)
\(\Rightarrow\left|2x-1\right|\le1\)
\(\Rightarrow\left[{}\begin{matrix}2x-1\le1\\2x-1\le-1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x\le1\\x\le0\end{matrix}\right.\)
Dấu bằng xảy ra khi \(\text{x =1 , x= 0}\)