\(a^2+b^2+(a-b)^2=c^2+d^2+(c-d)^2 \)

CMR \(a^4+b^4+(...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Ừ, bn chỉ n đổi dấu + thành - @Trần Đạt

N
4 tháng 7 2017

trong quyển bồi dưỡng hsg toán THCS có giải đấy

tất cả đều ở trỏng

4 tháng 7 2017

Ta có: \(a^2+b^2+\left(a+b\right)^2=c^2+d^2+\left(c+d\right)^2\)

=> \(a^2+b^2+a^2+b^2+2ab=c^2+d^2+c^2+d^2+2cd\)

=> \(a^2+b^2+ab=c^2+d^2+cd\)

=> \(\left(a^2+b^2+ab\right)^2=\left(c^2+d^2+cd\right)^2\)

=> \(a^4+b^4+a^2b^2+2a^2b^2+2a^3b+2b^3a=c^4+d^4+c^2d^2\)

\(+2c^2d^2+2c^3d+2cd^3\)

=> \(2a^4+2b^4+6a^2b^2+4a^3b+4ab^3=2c^4+2d^4+6c^2d^2\)

\(+4c^3d+4cd^3\)

=> \(a^4+b^4+\left(a+b\right)^4=c^4+d^4+\left(c+d\right)^4\)

=> đpcm

4 tháng 7 2017

mi còn nhớ tau ko?

Bài 1​: Với mọi số x, y. Chứng minh rằng: a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \) b) \(x^2+5y^2-4xy+2x-6y+3>0\) Bài 2: Với mọi số thực x, a. Chứng minh rằng: \(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\) Bài 3: Cho \(a, b, c, d \in R\) và \(b< c < d\). Chứng minh rằng: a) \((a+b+c+d)^2>8(ac+bc)\) b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\) Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\)....
Đọc tiếp

Bài 1​: Với mọi số x, y. Chứng minh rằng:

a) \((x+y)^2-xy+1\ge(x+y)\sqrt{3} \)
b) \(x^2+5y^2-4xy+2x-6y+3>0\)

Bài 2: Với mọi số thực x, a. Chứng minh rằng:

\(x^4+2x^3+(2a+1)x^2+2ax+a^2+1>0\)

Bài 3: Cho \(a, b, c, d \in R\)\(b< c < d\). Chứng minh rằng:

a) \((a+b+c+d)^2>8(ac+bc)\)
b) \((a^2-b^2)(c^2-d^2)\le(ac-bd)^2\)

Bài 4: Cho các số a, b, c, d, p, q thỏa mãn điều kiện: \(p^2+q^2-a^2-b^2-c^2-d^2>0\). CMR:

\((p^2-a^2-b^2)(q^2-c^2-d^2)\le(pq-ac-bd)^2\)

Bài 5: \((a_1b_1+a_2b_2)^2\le(a_1^2+a_2^2)(b_1^2+b_2^2)\) dấu bằng xảy ra khi nào?

Bài 6: Cho a>0. Chứng minh rằng:

\(\sqrt{a+\sqrt{a+....+\sqrt{a}}}<\dfrac{1+\sqrt{1+4a}}{2}\)

Bài 7: \(y=\dfrac{x+1}{x^2+x+1}\). Tìm cực trị của y.

Bài 8: Cho \(0\le x, \) \(y\le1 \)\(x+y=3xy\). CMR: \(\dfrac{3}{9}\le \dfrac{1}{4(x+y)}\le \dfrac{3}{8}\)

Bài 9: Cho \(0\le x, \)\(y\le1 \). CMR: \((2^x+2^y)(2^{-x}+2^{-y})\ge \dfrac{9}{2}\)

Bài 10: Ba số thực a, b, c thỏa: \(a^2+b^2+c^2=2\), \(ab+bc+ca=1\) CMR: \(a,b,c \in [\dfrac{3}{4},\dfrac{4}{3}]\)

1
4 tháng 6 2018

@Phùng Khánh Linh

@Aki Tsuki

@Nhã Doanh

@Akai Haruma

@Nguyễn Khang

25 tháng 8 2016

đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)

→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)

thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)

\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)

áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)

s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)

s>=16/3-4→s>=\(\frac{4}{3}\)

25 tháng 8 2016

\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)

6 tháng 1 2020

Nhận xét:Ghi nhớ tam giác Pascal cho bậc 4:\(1\rightarrow4\rightarrow6\rightarrow4\rightarrow1\)

cần cù bù thông minh :)

\(a^2+b^2+\left(a-b\right)^2=c^2+d^2+\left(c-d\right)^2\)

\(\Leftrightarrow a^2+b^2+a^2-2ab+b^2=c^2+d^2+c^2-2cd+d^2\)

\(\Leftrightarrow a^2-ab+b^2=c^2-cd+d^2\)

\(\Rightarrow\left(a^2-ab+b^2\right)^2=\left(c^2-cd+d^2\right)^2\) ( mạnh dạn bình phương )

\(\Leftrightarrow a^4+a^2b^2+b^4-2a^3b-2ab^3+2a^2b^2=c^4+c^2d^2+d^4-2c^3d-2cd^3+2c^2d^2\)

\(\Leftrightarrow a^4+3a^2b^2+b^4-2a^3b-2ab^3=c^4+3c^2d^2+d^4-2c^3d-2cd^3\left(1\right)\)

Mặt khác:

\(a^4+b^4+\left(a-b\right)^4\)

\(=a^4+b^4+a^4-4a^3b+6a^2b^2-4ab^3+b^4\)

\(=2\left(a^4-2a^3b-2ab^3+3a^2b^2\right)\left(2\right)\)

Tương tự:

\(c^4+d^4+\left(c-d\right)^4=2\left(c^4-2c^3d-2cd^3+3c^2d^2\right)\left(3\right)\)

Từ ( 1 );( 2 );( 3 ) suy ra đpcm

4 tháng 7 2019

Bài 2 xét x=0 => A =0

xét x>0 thì \(A=\frac{1}{x-2+\frac{2}{\sqrt{x}}}\)

để A nguyên thì \(x-2+\frac{2}{\sqrt{x}}\inƯ\left(1\right)\)

=>cho \(x-2+\frac{2}{\sqrt{x}}\)bằng 1 và -1 rồi giải ra =>x=?

4 tháng 7 2019

1,Ta có \(\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)^2=a+b+c+2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ac}\)

=> \(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=2\)

\(a+2=a+\sqrt{ab}+\sqrt{bc}+\sqrt{ac}=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\)

\(b+2=\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)\)

\(c+2=\left(\sqrt{c}+\sqrt{b}\right)\left(\sqrt{c}+\sqrt{a}\right)\)

=> \(\frac{\sqrt{a}}{a+2}+\frac{\sqrt{b}}{b+2}+\frac{\sqrt{c}}{c+2}=\frac{\sqrt{a}}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)}+\frac{\sqrt{b}}{\left(\sqrt{b}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{a}\right)}+...\)

=> \(\frac{\sqrt{a}}{a+2}+...=\frac{2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)}{\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{c}\right)\left(\sqrt{b}+\sqrt{c}\right)}=\frac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)

=> M=0

Vậy M=0