Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1a thì được nè :v
( 3x + 1)( 4x + 1)( 6x + 1)( 12x + 1) = 2
⇔ 4( 3x + 1)3( 4x + 1)2( 6x + 1)( 12x + 1) = 2.4.3.2
⇔ ( 12x + 4)( 12x + 3)( 12x + 2)( 12x + 1) =48 ( 1)
Đặt : 12x + 1 = a , ta có :
( 1) ⇔ a( a+ 1)( a + 2)( a + 3) = 48
⇔ ( a2 + 3a)( a2 + 3a +2) = 48
Đặt : a3 + 3a = t , ta có :
t( t +2) =48
⇔ t2 + 2t - 48 = 0
⇔ t2 - 6t + 8t - 48 = 0
⇔ t( t - 6) + 8( t - 6) = 0
⇔ ( t - 6)( t + 8) = 0
⇔ t = 6 hoặc t = -8
Tự thế vào mà tìm a sau đó suy ra x nha
Bài 1:
b)
HPT \(\left\{\begin{matrix} x^2+\frac{1}{y^2}+\frac{4x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} \left(x+\frac{1}{y}\right)^2+\frac{2x}{y}=2\\ 2\left(x+\frac{1}{y}\right)+\frac{x}{y}=3\end{matrix}\right.\)
Lấy PT(1) trừ 2PT(2) thu được:
\(\left(x+\frac{1}{y}\right)^2-4\left(x+\frac{1}{y}\right)=-4\)
\(\Leftrightarrow \left(x+\frac{1}{y}-2\right)^2=0\Rightarrow x+\frac{1}{y}=2\)
Thay vào thu được \(\frac{x}{y}=-1\)
Theo định lý Viete đảo thì \((x,\frac{1}{y})\) là nghiệm của PT:
\(X^2-2X-1=0\)
\(\Rightarrow (x,\frac{1}{y})=(1+\sqrt{2}; 1-\sqrt{2})\) hoặc \((1-\sqrt{2}; 1+\sqrt{2})\)
Tức là: \((x,y)=(1+\sqrt{2}, -1-\sqrt{2}); (1-\sqrt{2}; -1+\sqrt{2})\)
Lời giải:
Phản chứng. Giả sử với điều kiện đã cho thì cả hai PT vô nghiệm. Tức là:
\(\left\{\begin{matrix} \Delta_1=b^2-4c<0\\ \Delta_2=c^2-4b< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} b^2< 4c\\ c^2< 4b\end{matrix}\right.\) (1)
Vì \(b^2,c^2>0\) nên từ \((1);(2)\Rightarrow b,c>0\)
Không mất tính tổng quát giả sử \(b>c\Rightarrow \frac{1}{b}< \frac{1}{c}\)
\(\Rightarrow \left\{\begin{matrix} \frac{2}{b}< \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\\ \frac{2}{c}> \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b>4\\ c<4\end{matrix}\right.(2)\)
Khi đó từ (1) và \((*)\) suy ra \(b^2< 4c< 4.4\Rightarrow b< 4\) (mâu thuẫn với \((*)\) )
Do đó điều giả sử sai. Tức là luôn tồn tại ít nhất một trong hai giá trị \(\Delta\) không âm, tức là ít nhất một trong hai phương trình có nghiệm (đpcm)
từ hệ thức: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}b;c\ne0\\2\left(b+c\right)=bc\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\Delta_1=b^2-4c\\\Delta_2=c^2-4b\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
\(\Delta=\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)(3)
Delta >0 => delta1 hoặc delta 2 >=0 => dpcm
1, △ABC△ABC vuông có ˆA=900A^=900 , ˆB=600B^=600 và b = 10 thì độ dài a là :
A. a = 15√3153
B. a = 10√3103
C. a = 20√332033
D. a = 20√3203
2, △ABC△ABC vuông có ˆA=900,ˆC=600A^=900,C^=600 và b = thì độ dài b' là :
A. b' = 8
B. b' = 6
C. b' = 6√363
D. b' = 3√3
đặt b+c+d=x;c+d+a=y;d+a+b=z;a+b+c=t(a,b,c,d>0→x,y,z,t>0)
→a=\(\frac{x+y+z+t}{3}-x=\frac{x+y+z+t-3x}{3}\) tương tự ta có:b=\(\frac{x+y+z+t-3y}{3}\);c=\(\frac{x+y+z+t-3z}{3}\);d=\(\frac{x+y+z+t-3t}{3}\)
thay vào bt ta được:\(\frac{x+y+z+t-3x}{3x}+\frac{x+y+z+t-3y}{3y}+\frac{x+y+z+t-3z}{3z}+\frac{x+y+z+t-3t}{3t}\)
→\(\frac{1}{3}\left(1+\frac{y}{x}+\frac{z}{x}+\frac{t}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{t}{y}+\frac{x}{z}+\frac{y}{z}+1+\frac{t}{z}+\frac{x}{t}+\frac{y}{t}+\frac{z}{t}+1\right)-4\)
áp dụng định lý cô shi cho 2 số dương:(x,y,z,t>0)
s>=\(\frac{1}{3}\left(2+2+2+2+2+2+4\right)-4\)
s>=16/3-4→s>=\(\frac{4}{3}\)
\(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}>\frac{4}{3}\)