K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
15 tháng 3 2018

Lời giải:

Phản chứng. Giả sử với điều kiện đã cho thì cả hai PT vô nghiệm. Tức là:

\(\left\{\begin{matrix} \Delta_1=b^2-4c<0\\ \Delta_2=c^2-4b< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} b^2< 4c\\ c^2< 4b\end{matrix}\right.\) (1)

Vì \(b^2,c^2>0\) nên từ \((1);(2)\Rightarrow b,c>0\)

Không mất tính tổng quát giả sử \(b>c\Rightarrow \frac{1}{b}< \frac{1}{c}\)

\(\Rightarrow \left\{\begin{matrix} \frac{2}{b}< \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\\ \frac{2}{c}> \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b>4\\ c<4\end{matrix}\right.(2)\)

Khi đó từ (1) và \((*)\) suy ra \(b^2< 4c< 4.4\Rightarrow b< 4\) (mâu thuẫn với \((*)\) )

Do đó điều giả sử sai. Tức là luôn tồn tại ít nhất một trong hai giá trị \(\Delta\) không âm, tức là ít nhất một trong hai phương trình có nghiệm (đpcm)

19 tháng 3 2018

từ hệ thức: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}b;c\ne0\\2\left(b+c\right)=bc\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\Delta_1=b^2-4c\\\Delta_2=c^2-4b\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)

\(\Delta=\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)(3)

Delta >0 => delta1 hoặc delta 2 >=0 => dpcm

NV
30 tháng 7 2021

\(\Delta_1=b^2-4c\) ; \(\Delta_2=c^2-4b\)

\(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow bc=2\left(b+c\right)\)

Do đó:

\(\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)

\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm

\(\Rightarrow\) Ít nhất một trong 2 phương trình trên có nghiệm

31 tháng 3 2017

Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.

\(x^2-2x+1=0\)

\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.

Vậy đề bài sai.

31 tháng 3 2017

Nếu xét các trường hợp khác thì sao alibaba ??

29 tháng 4 2016

không biết.

29 tháng 4 2016

đừng có k cho hiếu nó có ghi gì đâu

4 tháng 5 2017

Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)

Ta có    \(\Delta_1=a^2-4\)  ;   \(\Delta_2=b^2-4\)  ;   \(\Delta_3=c^2-4\)

Do đó   \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)

Vậy   \(\Delta_1+\Delta_2+\Delta_3\ge0\)  nên ít nhất phải có   \(\Delta_1\ge0\)  hoặc  \(\Delta_2\ge0\)  hoặc   \(\Delta_3\ge0\)

(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)

Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.