Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta_1=b^2-4c\) ; \(\Delta_2=c^2-4b\)
\(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow bc=2\left(b+c\right)\)
Do đó:
\(\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)
\(\Rightarrow\) Luôn tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) không âm
\(\Rightarrow\) Ít nhất một trong 2 phương trình trên có nghiệm
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Ta có \(\Delta_1=a^2-4\) ; \(\Delta_2=b^2-4\) ; \(\Delta_3=c^2-4\)
Do đó \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)
Vậy \(\Delta_1+\Delta_2+\Delta_3\ge0\) nên ít nhất phải có \(\Delta_1\ge0\) hoặc \(\Delta_2\ge0\) hoặc \(\Delta_3\ge0\)
(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)
Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.
Lời giải:
Phản chứng. Giả sử với điều kiện đã cho thì cả hai PT vô nghiệm. Tức là:
\(\left\{\begin{matrix} \Delta_1=b^2-4c<0\\ \Delta_2=c^2-4b< 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} b^2< 4c\\ c^2< 4b\end{matrix}\right.\) (1)
Vì \(b^2,c^2>0\) nên từ \((1);(2)\Rightarrow b,c>0\)
Không mất tính tổng quát giả sử \(b>c\Rightarrow \frac{1}{b}< \frac{1}{c}\)
\(\Rightarrow \left\{\begin{matrix} \frac{2}{b}< \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\\ \frac{2}{c}> \frac{1}{b}+\frac{1}{c}=\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b>4\\ c<4\end{matrix}\right.(2)\)
Khi đó từ (1) và \((*)\) suy ra \(b^2< 4c< 4.4\Rightarrow b< 4\) (mâu thuẫn với \((*)\) )
Do đó điều giả sử sai. Tức là luôn tồn tại ít nhất một trong hai giá trị \(\Delta\) không âm, tức là ít nhất một trong hai phương trình có nghiệm (đpcm)
từ hệ thức: \(\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}b;c\ne0\\2\left(b+c\right)=bc\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\Delta_1=b^2-4c\\\Delta_2=c^2-4b\end{matrix}\right.\)\(\begin{matrix}\left(1\right)\\\left(2\right)\end{matrix}\)
\(\Delta=\Delta_1+\Delta_2=b^2+c^2-4\left(b+c\right)=b^2+c^2-2bc=\left(b-c\right)^2\ge0\)(3)
Delta >0 => delta1 hoặc delta 2 >=0 => dpcm