Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(a-b)^2 = a^2-2ab+b^2
3^2 =7 - 2ab
9= 7 -2ab
-2ab=7-9
-2ab= -2
ab= 1
Có a^3-b^3= (a-b)(a^2+ab+b^2)
a^3-b^3= 3. (7+1)
a^3-b^3= 24
Ta co : (a-b)2=a2-2ab+b2
(a-b)2=a2+b2-2ab
Ma : a2+b2 va a-b=3
\(\Rightarrow\)32=7-2ab
7-32=-2ab
-2=-2ab
\(\Leftrightarrow ab=1\)
Ta lai co : a3-b3
=(a-b)(a2+ab+b2)
=(a-b)(a2+b2+ab)
=3.(7+1)
=24
Câu này dễ lắm nha!
Ta có: \(a-b=3\)
\(\Rightarrow\left(a-b\right)^2=9\)
\(\Rightarrow a^2-2ab+b^2=9\)
\(Hay:7-2ab=9\)
\(\Rightarrow2ab=-2\)
\(ab=-1\)
Lại có: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
Thay vào là ra thoy,kết quả là 18 thì pk
=.= hok tốt!!
Bài 2:
\(a^2+b^2=\left(a+b\right)^2-2ab=5^2-2\cdot\left(-2\right)=9\)
\(\dfrac{1}{a^3}+\dfrac{1}{b^3}=\dfrac{a^3+b^3}{a^3b^3}=\dfrac{\left(a+b\right)^3-3ab\left(a+b\right)}{\left(ab\right)^3}\)
\(=\dfrac{5^3-3\cdot5\cdot\left(-2\right)}{\left(-2\right)^3}=\dfrac{125+30}{8}=\dfrac{155}{8}\)
\(a-b=-\sqrt{\left(a+b\right)^2-4ab}=-\sqrt{5^2-4\cdot\left(-2\right)}=-\sqrt{33}\)
ta co: a-b=3
=> (a-b)^2=9
a^2-2ab+b^2=9
a^2+b^2-2ab=9
7-2ab=9
2ab=-2
ab=-1
ta lai co a^3-b^3=(a-b)(a^2+ab+b^2)=(a-b)(a^2+b^2+ab)=3(7-1)=18
Ta có:
a2 + b2 =7
a+b=3
(a+b)2=9 =>a2 +b2 +2ab=9 <=>ab=1
=> a2 +b2 =7
a+b=3
ab=1
A=a4 +b4 = (a2 +b2 )2 -2a2b2
= 7-2.1=47
Ta có :
\(a^2+b^2=\left(a+b\right)^2-2ab=7\)
=> \(9-2ab=7\Rightarrow2ab=2\Rightarrow ab=1\)
Lại có :
\(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2=7^2-2\cdot1=47\)
+ Chứng minh (a + b)2 = (a – b)2 + 4ab
Ta có:
VP = (a – b)2 + 4ab = a2 – 2ab + b2 + 4ab
= a2 + (4ab – 2ab) + b2
= a2 + 2ab + b2
= (a + b)2 = VT (đpcm)
+ Chứng minh (a – b)2 = (a + b)2 – 4ab
Ta có:
VP = (a + b)2 – 4ab = a2 + 2ab + b2 – 4ab
= a2 + (2ab – 4ab) + b2
= a2 – 2ab + b2
= (a – b)2 = VT (đpcm)
+ Áp dụng, tính:
a) (a – b)2 = (a + b)2 – 4ab = 72 – 4.12 = 49 – 48 = 1
b) (a + b)2 = (a – b)2 + 4ab = 202 + 4.3 = 400 + 12 = 412.
Ta có: \(ab=\dfrac{\left(a+b\right)^2-\left(a^2+b^2\right)}{2}=1\).
\(a^4+b^4=\left(a^2+b^2\right)-2a^2b^2=7^2-2=47\).
Sai một chút rồi bạn!
Cái chỗ \(a^4+b^4=\left(a^2+b^2\right)^2-2a^2b^2\) mới đúng bạn ạ!
Sửa đề là \(a+b=5\) nhé.
Có 2 cách để giải dạng bài này. Cách 1 là từ điều kiện đề cho, giải hệ phương trình tìm được \(a,b\) rồi thay số vào tính. Nhưng trong nhiều trường hợp cách này khá dài dòng nên mình sẽ làm theo cách thứ 2 như sau:
\(A=a^2+b^2=\left(a+b\right)^2-2ab=5^2-2.3=19\)
\(B=a^3+b^3=\left(a+b\right)^3-3ab\left(a+b\right)=5^3-3.3.5=80\)
Ta có: (a-b)^2=a^2-2ab+b^2=9
=>ab=1
Mặt khác, a^3-b^3= (a-b)(a^2-ab+b^2)= 3.6=18