\(2+2^2+2^3+...+2^{60}\)Chung minh A chia het cho 3,7,15

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2015

Ta có: A= 2 + 2+ 2+ ... + 260= (2 +22) + (23+ 24) + ... + (259 + 260).

             = 2 x (2 + 1) + 2x (2 + 1) + ... + 259 x (2 + 1).

             = 2 x 3 + 23 x 3 + ... + 259 x 3.

             = 3 x ( 2 + 23 + ... + 259).

Vì A = 3 x ( 2 + 23 + ... + 259)  nên A chia hết cho 3.

           A= (2 +2+ 23) + (2+ 2 + 26) + ... + (258 + 259 + 260).

             = 2 x (1 + 2 + 22) + 24 x (1 + 2 + 22) + ... + 258 x (1 + 2 + 22).

             = 2 x 7 + 24 x 7 + ... + 258 x 7.

             = 7 x ( 2 + 24 + ... + 258).

Vì A = 7 x ( 2 + 24 + ... + 258)  nên A chia hết cho 7.

 

  A= (2 +2+ 2+ 24) + (2+ 2 + 2+ 28) + ... + (257 + 258 + 259 + 260).

             = 2 x (1 + 2 + 2+ 23) + 25 x (1 + 2 + 2+ 23) + ... + 257 x (1 + 2 + 2+ 23).

             = 2 x 15 + 25 x 15 + ... + 257 x 15.

             = 15 x ( 2 + 24 + ... + 258).

Vì A = 15 x ( 2 + 24 + ... + 258)  nên A chia hết cho 15.

1 tháng 11 2021

Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260

= (2 + 22) + (23 + 24) + .. + (259 + 260)

= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1) 

= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259\(⋮\)3

1 tháng 11 2021

giup minh voi

15 tháng 11 2019

câu a là 1 hàng đẳng thức bạn nhé

Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2

b) p^2-1=(p-1)(p+1)

Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2

+ Nếu p:3 dư 1 thì p-1 chia hết cho 3

+ Nếu p:3 dư 2 thì p+1 chia hết cho 3

=> p^2-1 chia hết cho 3.

Do p>3, p NT=> p lẻ=> p=2k+1

Thay vào đc p^2-1=2k(2k+2)

=4k(k+1)

Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2

=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8

Tóm lại p^2-1 chia hết cho 24 do (3,8)=1

2) p^4-1=(p^2-1)(p^2+1)

Theo câu a thì p^2-1 chia hết cho 24

Do p lẻ (p là SNT >3)

=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ

=> p^2+1 chia hết cho 2

=> p^4-1 chia hết cho 48 (đpcm).

9 tháng 2 2019

\(A=2+2^2+2^3+...+2^{60}\)

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(A=2\cdot\left(1+2\right)+2^3\cdot\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(A=2\cdot3+2^3\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+2^3+...+2^{59}\right)\)

\(\Rightarrow A⋮3\)

\(A=2+...+2^{60}\)

\(A=\left(2+2^2+2^3\right)+...+\left(2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2\right)+...+2^{58}.\left(1+2+2^2\right)\)

\(A=2.7+...+2^{58}.7\)

\(A=7.\left(2+...+2^{58}\right)\)

\(\Rightarrow A⋮7\)

\(A=2+2^2+...+2^{60}\)

\(A=\left(2+2^2+2^3+2^4\right)+...+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(A=2.\left(1+2+2^2+2^3\right)+...+2^{57}.\left(1+2+2^2+2^3\right)\)

\(A=2.15+...+2^{57}.15\)

\(A=15.\left(2+...+2^{57}\right)\)

\(\Rightarrow A⋮15\)

8 tháng 7 2015

giải như tiểu thiên thiên cũng giải

22 tháng 2 2020

Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\) 

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)

\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)

=> A < 1 (đpcm)

20 tháng 11 2016

\(2+2^2+2^3+...+2^{60}=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{59}+2^{60}\right)\)

\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(=2.3+2^3.3+...+2^{59}.3\)

\(=3\left(2+2^3+...+2^{59}\right)\) chia hết cho 3 (đpcm)

Bạn nhóm các số hạng để chứng minh chia hết cho 7;15 cũng tương tự mình làm ở trên nhé :)

12 tháng 1 2017

A=2+22+23+...+260

A=(2+22)+(23+24)+...+(259+260)

A=2(1+2)+23(1+2)+...+259(1+2)

A=(1+2)(2+23+...+259)

A=3(2+23+...+259) ⋮ 3

A=2+22+23+...+260

A=(2+22+23)+(24+25+26)+...+(258+259+260)

A=2(1+2+4)+24(1+2+4)+...+258(1+2+4)

A=(1+2+4)(2+24+...+258)

A=7(2+24+...+258) ⋮ 7

A=2+22+23+...+260

A=(2+22+23+24)+(25+26+27+28)+...+(257+258+259+260)

A=2(1+2+4+8)+25(1+2+4+8)+...+257(1+2+4+8)

A=(1+2+4+8)(2+25+...+257)

A=15(2+25+...+257) ⋮ 15

k mình nhé

12 tháng 1 2017

HD: Số số hạng =60 chia hết cho 2& 3

2+2^2=6 chia hết cho 3=> ghép 2 số hạng liên tiếp => chia hết cho 3

2+2^3=10 chia hết cho 5=>ghép 2 số hạng cách nhau 1 => chia hết cho 5

2+2^2+2^3=14 chia hết cho 7=>ghép 3 số hạng liên tiếp => chia hết cho 7

=> dpcm