Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a là 1 hàng đẳng thức bạn nhé
Vế trái = (a-b)(a+b)=a^2+ab-ab-b^2=a^2-b^2
b) p^2-1=(p-1)(p+1)
Do p>3 và p là SNT => p ko chia hết cho 3 => p chia 3 dư 1 hoặc 2
+ Nếu p:3 dư 1 thì p-1 chia hết cho 3
+ Nếu p:3 dư 2 thì p+1 chia hết cho 3
=> p^2-1 chia hết cho 3.
Do p>3, p NT=> p lẻ=> p=2k+1
Thay vào đc p^2-1=2k(2k+2)
=4k(k+1)
Do k và k+1 là 2 số tự nhiên liên tiếp => chia hết cho 2
=> 4k(k+1) chia hết cho 8=> p^2-1 chia hết cho 8
Tóm lại p^2-1 chia hết cho 24 do (3,8)=1
2) p^4-1=(p^2-1)(p^2+1)
Theo câu a thì p^2-1 chia hết cho 24
Do p lẻ (p là SNT >3)
=> p^2 cx lẻ => p^2+1 chẵn do 1 lẻ
=> p^2+1 chia hết cho 2
=> p^4-1 chia hết cho 48 (đpcm).
Ta có : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2015.2015}\)
\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}\)
\(=1-\frac{1}{2015}=\frac{2014}{2015}< 1\)
=> A < 1 (đpcm)
Ta có : A = 2 + 22 + 23 + 24 + .. + 259 + 260
= (2 + 22) + (23 + 24) + .. + (259 + 260)
= 2(2 + 1) + 23(2 + 1) + ... + 259(2 + 1)
= (2 + 1)(2 + 23 + ... + 259) = 3(2 + 23 + ... + 259) \(⋮\)3
= 3( 1 + 3 + 33) + 35(1 + 3 + 33) + ............+31989(1 + 3 + 33)
= 13( 3 + 35 +........+ 31989) nên chia hết 13
\(B=4+4^2+4^3+.....+4^{2016}\)
\(4B=4\left(4+4^2+4^3+.....+4^{2016}\right)\)
\(4B=4^2+4^3+4^4+.....+4^{2017}\)
\(4B-B=\left(4^2+4^3+4^4+......+4^{2017}\right)-\left(4+4^2+4^3+.....+4^{2016}\right)\)
\(3B=4^{2017}-4\)
\(B=\dfrac{4^{2017}-4}{3}\)
giải như tiểu thiên thiên cũng giải