Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có: (a+b)2 = 2.(a2+b2)
=> a2 + 2ab + b2 = 2a2 + 2b2
=> 2a2 + 2b2 - a2 - 2ab - b2 = 0
a2 - 2ab + b2 = 0
(a-b)2 = 0
=> a -b = 0
=> a = b
b) ta có: a2 +b2 + c2 = ab + bc + ac => 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
=> (a-b)2 + (b-c)2 + (c-a)2 = 0
=> a = b = c
\(a^2+b^2+1=ab+a+b\)
\(\Rightarrow2\left(a^2+b^2+1\right)=2(ab+a+b)\)
\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1=0\)\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a-b=0;a-1=0;b-1=0\)
Hay \(a=b=1\left(đpcm\right)\)
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
ta có : a^2 + b^2 + 1 = ab + a + b
=> 2a^2 + 2b^2 + 2 = 2ab + 2a + 2b
=> 2a^2 + 2b^2 + 2 - 2ab - 2a - 2b = 0
(a^2-2a+1) + (b^2-2b+1) + (a^2 - 2ab + b^2) = 0
(a-1)^2 + (b-1)^2 + (a-b)^2 = 0
mà (a-1)^2;(b-1)^2;(a-b)^2 lớn hơn hoặc = 0
=> (a-1)^2 = 0 => a-1=0 => a = 1
(b-1)^2 = 0 => b - 1 = 0 => b = 1
=> a =b=1
\(a^2+b^2+1=ab+a+b\)
\(\Leftrightarrow a^2+b^2+1-ab-a-b=0\)
\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b=0\)
\(\Leftrightarrow\left(a^2-2ab+b^2\right)+\left(a^2-a+1\right)+\left(b^2-b+1\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a=b=1\)