Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^2+b^2+1=ab+a+b\)
\(\Rightarrow2\left(a^2+b^2+1\right)=2(ab+a+b)\)
\(\Rightarrow2a^2+2b^2+2=2ab+2a+2b\)
\(\Rightarrow a^2-2ab+b^2+a^2-2a+1+b^2-2b+1=0\)\(\Rightarrow\left(a-b\right)^2+\left(a-1\right)^2+\left(b-1\right)^2=0\)
\(\Rightarrow a-b=0;a-1=0;b-1=0\)
Hay \(a=b=1\left(đpcm\right)\)
a) ta có: (a+b)2 = 2.(a2+b2)
=> a2 + 2ab + b2 = 2a2 + 2b2
=> 2a2 + 2b2 - a2 - 2ab - b2 = 0
a2 - 2ab + b2 = 0
(a-b)2 = 0
=> a -b = 0
=> a = b
b) ta có: a2 +b2 + c2 = ab + bc + ac => 2a2 + 2b2 + 2c2 = 2ab + 2bc + 2ac
=> (a-b)2 + (b-c)2 + (c-a)2 = 0
=> a = b = c
1,\(\Leftrightarrow2a^2+2b^2+2-2ab-2a-2b\ge0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(a-1\right)^2\left(b-1\right)^2\ge0\)(Luôn đúng)
Dấu '=' xảy ra khi \(a=b=1\)
2/Bổ sung đk a,b >= 0 (nếu a,b < 0,cho a=b=-2 suy ra a^3 + b^3 + 1 -3ab = -27 < 0)
Ta chứng minh BĐT \(x^3+y^3+z^3\ge3xyz\)
\(\Leftrightarrow x^3+y^3+z^3-3xyz\ge0\Leftrightarrow\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\ge0\) (đúng)
Áp dụng vào,suy ra: \(a^3+b^3+1^3-3ab\ge3ab-3ab=0\)
Dấu "=" xảy ra khi a = b = c = 1
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2b+1\right)+\left(c^2-2c+1\right)=0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
\(\Leftrightarrow a=b=c=1\)
b) \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=3\left(ab+bc+ac\right)\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ac\Leftrightarrow2a^2+2b^2+2c^2-2ab-2bc-2ac=0\)
\(\Leftrightarrow\left(a^2+b^2-2ab\right)+\left(b^2+c^2-2bc\right)+\left(c^2+a^2-2ac\right)=0\)
\(\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\Leftrightarrow a=b=c\)