\(A=1+3+3^2+...+3^{2021}\)

Hỏi A có phải là số chính phương hay ko

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2017

Ta có:

na^2=b^2

=>n=b^2:a^2

=>n=(b:a)^2

Vì n;a;bEN

=>(b:a)^2EN

=>b:aEN

=>(b:a)^2 là số chính phương

=>n là số chính phương\

Vậy.......

30 tháng 1 2021

Sửa đề: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\) thì \(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)\) là số chính phương

Ta có: \(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2021}\\abc=2021\end{cases}}\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\left(abc\ne0\right)\)

Khi đó ta có: \(\hept{\begin{cases}1+a^2=ab+bc+ca+a^2=\left(a+b\right)\left(a+c\right)\\1+b^2=\left(b+c\right)\left(b+a\right)\\1+c^2=\left(c+a\right)\left(c+b\right)\end{cases}}\)

Nhân vế với vế ta được:

\(M=\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2\)

=> M là số chính phương

10 tháng 6 2016

đợi mk tí mk lm cho

10 tháng 6 2016

bài 1: Gọi 2 số chính phương liên tiếp là a\(^2\) và (a+1)\(^2\)( vs a\(\in\) N )

CM :S=a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+1)\(^2\) là số chính phương

Thật vậy : S= a\(^2\) +(a+1)\(^2\)+a\(^2\).(a+2a+1)

                   = a\(^2\)+a\(^2\)+2a+1+a\(^4\)+2a\(^3\)+a\(^2\)

                  = (a\(^2\))\(^2\)+a\(^2\)+1\(^2\)+2.a\(^2\).a+a+2a\(^2\).1+2a.1

                  = (a\(^2\)+a+1)\(^2\) là số chính phương (đpcm)

 

24 tháng 12 2021

Ta có: \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\frac{ab+bc+ca}{abc}=\frac{1}{a+b+c}\)

\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)

\(\Leftrightarrow a^2b+ab^2+c^2a+ca^2+b^2c+bc^2+2abc=0\)

\(\Leftrightarrow\left(a^2+2ab+b^2\right)c+ab\left(a+b\right)+c^2\left(a+b\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(ab+bc+ca+c^2\right)=0\)

\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

=> Hoặc a+b=0 hoặc b+c=0 hoặc c+a=0

=> Hoặc a=-b hoặc b=-c hoặc c=-a

Ko mất tổng quát, g/s a=-b

a) Ta có: vì a=-b thay vào ta được:

\(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=-\frac{1}{b^3}+\frac{1}{b^3}+\frac{1}{c^3}=\frac{1}{c^3}\)

\(\frac{1}{a^3+b^3+c^3}=\frac{1}{-b^3+b^3+c^3}=\frac{1}{c^3}\)

=> đpcm

b) Ta có: \(a+b+c=1\Leftrightarrow-b+b+c=1\Rightarrow c=1\)

=> \(P=-\frac{1}{b^{2021}}+\frac{1}{b^{2021}}+\frac{1}{c^{2021}}=\frac{1}{1^{2021}}=1\)

1 tháng 5 2018

Gỉa sử tồn tại k để 2k + 3k là số chính phương

     Nếu  \(k=4t\)  ( t thuộc N*)

thì:   \(2^k+3^k=2^{4t}+3^{4t}=16^t+81^t\) có tận cùng là 7   (mâu thuẫn, do số chính phương ko tận cùng = 7)

     Nếu  \(k=4t+1\)  ( t thuộc N*)

thì    \(2^k+3^k=2^{4t+1}+3^{4t+1}=16^t.2+81^t.3\) chia 3 dư 2 (mâu thuẫn, do số chính phương chia 3 chỉ có thể dư 0 or 1)

      Nếu  \(k=4t+2\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+2}+3^{4t+2}=16^t.4+81^t.9\) có tận cùng là 3 (mâu thuẫn,.....)

      Nếu  \(k=4t+3\) ( t thuộc N*)

thì  \(2^k+3^k=2^{4t+3}+3^{4t+3}=16^t.8+81^t.27\) chia 3 dư 2 (mâu thuẫn,....)

Vậy không tồn tại k để  2k + 3k là số chính phương

1 tháng 5 2018

Em mới hc lớp 7 ko biết đúng ko

Giả sử: \(2^k+3^k=n^2\)(tức là số chính phương)

Ta có:

 \(2^k\equiv2\)(mod 0) và \(3^k\equiv3\)(mod 0)

Suy ra: \(2^k+3^k\equiv5\)(mod 0)

Suy ra: \(n^2\equiv5\)(mod 0)

Mà 5 chia 3 dư 2

Suy ra: \(n^2\)chia 3 dư 2

Sử dụng bổ đề số chính phương chia 3 không thể dư 2

Suy ra: Phản chứng 

Vậy không tồn tại ........

7 tháng 10 2020

Ta có:

\(A=\frac{\left(1^4+4\right)\left(2^4+4\right)...\left(2021^4+4\right)}{2}\)

\(=\frac{\left(1^4+4\right)\left(2^4+4\right)}{2}\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\)

\(=5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\)

Đặt \(2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)=c\)

Từ công thức: \(a^x\cdot b^x=\left(ab\right)^x\left(a,b,x\inℤ\right)\Rightarrow a^2\cdot b^2=\left(ab\right)^2\)

\(\Rightarrow\)Nếu \(c\) là số chính phương thì \(5^2\cdot\left[2\cdot\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\right]\) là số chính phương.

Có thể thấy các thừa số của tích \(c\) mà có dạng \(\left(2d\right)^4+4\left(d\inℕ\right)\) thì chia hết cho \(2^2\).

Phân tích các thừa số của tích \(c\) ra thừa số nguyên tố. Ta có:

\(c=2\cdot\left(...\right)\left(2^2\cdot5\cdot13\right)\left(...\right)\left(2^2\cdot5^2\cdot13\right)...\left(2020^4+4=2^2\cdot...\right)\left(2021^4+4=...\cdot...\right)\)

Gộp các thừa số \(2^2\) lại thành tích ta có:

\(c=\left(2^2\right)^{\frac{\left(2021-3+1\right)-1}{2}}\cdot2\cdot e\)

\(=\left(2^2\right)^{1009}\cdot2\cdot e\)

\(=\left(2^{1009}\right)^2\cdot2\cdot e\) (trong đó ký hiệu \(e\) là tích của các thừa số nguyên tố còn lại trong dãy \(\left(3^4+4\right)\left(4^4+4\right)...\left(2021^4+4\right)\) sau khi 1009 thừa số \(2^2\) bị tách ra.

Có thể thấy tích \(e\) gồm các thừa số nguyên tố lớn hơn 2\(\Rightarrow2e\) không thể là số chính phương.

\(\Rightarrow\left(2^{1009}\right)^2\cdot2\cdot e\) không phải là số chính phương\(\Rightarrow c\) không phải là số chính phương.

\(\Rightarrow A\) không phải là số chính phương (đpcm).